ARTICLE

PRESCRIBING PRACTICES OF BROADSPECTRUM ANTIBIOTICS IN TERTIARY CARE HOSPITAL

04 Pages : 34-46

http://dx.doi.org/10.31703/gdddr.2023(VIII-III).04      10.31703/gdddr.2023(VIII-III).04      Published : Sep 2023

Prescribing Practices of Broad-Spectrum Antibiotics in Tertiary Care Hospital

    Antibiotics are chemical substances produced by microorganisms. This study aims to find the prescribing practices of broad-spectrum antibiotics in tertiary care hospitals. It is a descriptive observational chart review of patients who have been prescribed broad-spectrum antibiotics in Lady Reading Hospital, Peshawar and data is collected using a standardized chart obtained from the World Health Organization and then analyzed using software such as Microsoft Excel and Statistical software. The results suggested that the frequency and percentage of the broad spectrum antibiotics are high and most broad-spectrum antibiotics prescribed are empirical. Furthermore, the study suggests that educational programs such as antibiotics stewardship programs should be utilized to educate the prescriber in the hospital, which aims to reduce the risks and various complications associated with the use of broad-spectrum antibiotics. Culture samples are required before administration of antimicrobials. Frequent reassessment of the patient's condition and antimicrobial therapy may be indicated.

    Antibiotics , Broad-spectrum ,Prescribing practices ,Tertiary care hospitals, Descriptive observational , Chart review , Empirical prescription , Antibiotics stewardship , Culture samples , Antimicrob
    (1) Ahmad Ali
    Graduate Scholar, Department of Pharmacy, University of Peshawar, KP, Pakistan.
    (2) Maria Naz Bakhtiari
    PhD, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
    (3) Amna Shahid
    Graduate Scholar, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
  • Agarwal, A.K., Tunison, K., Mitsche, M.A., McDonald, J.G., & Garg, A. (2019). Insights into lipid accumulation in skeletal muscle in dysferlin-deficient mice. Journal of lipid research 60, 2057-2073. https://doi.org/10.1194/jlr.RA119000399
  • Ahmad, H.I., Ahmad, M.J., Adeel, M.M., Asif, A.R., & Du, X. (2018). Positive selection drives the evolution of endocrine regulatory bone morphogenetic protein system in mammals. Oncotarget 9, 18435-18445. https://doi.org/10.18632/oncotarget.24240
  • Ahmad, H.I., Liu, G., Jiang, X., Liu, C., Chong, Y., & Huarong, H. (2017). Adaptive molecular evolution of MC1R gene reveals the evidence for positive diversifying selection in indigenous goat populations. Ecology and evolution 7, 5170-5180. https://doi.org/10.1002/ece3.2919
  • Ahmad, H.I., Liu, G.Q., Jiang, X.P., Liu, C.H., Chong, Y.Q., & Huang, H.R. (2017). Adaptive molecular evolution of MC1R gene reveals the evidence for positive diversifying selection in indigenous goat populations. Ecology and evolution 7, 5170-5180. https://doi.org/10.1002/ece3.2919
  • Ahmad, M.J., Ahmad, H.I., Adeel, M.M., Liang, A., Hua, G., Murtaza, S., Mirza, R.H., Elokil, A., Ullah, F., & Yang, L. (2019). Evolutionary Analysis of Makorin Ring Finger Protein 3 Reveals Positive Selection in Mammals. Evolutionary bioinformatics online 15, 1176934319834612. https://doi.org/10.1177/1176934319834612
  • Arbuckle, K. (2020). From molecules to macroevolution: Venom as a model system for evolutionary biology across levels of life. Toxicon: X 6, 100034. https://doi.org/10.1016/j.toxcx.2020.100034
  • Asif, A.R., Awais, M., Qadri, S., Ahmad, H.I., & Du, X. (2017). Positive selection of IL-33 in adaptive immunity of domestic Chinese goats. Ecology and evolution 7, 1954-1963. https://doi.org/10.1002/ece3.2813
  • Auclair, S., Rossetti, R., Meslin, C., Monestier, O., Di Pasquale, E., Pascal, G., Persani, L., & Fabre, S. (2013). Positive selection in bone morphogenetic protein 15 targets a natural mutation associated with primary ovarian insufficiency in human. PloS one 8, e78199. https://doi.org/10.1371/journal.pone.0078199
  • Bakiu, R., Korro, K., & Santovito, G. (2015). Positive selection effects on the biochemical properties of mammal pyroglutamylated RFamide peptide receptor (QRFPR). Italian Journal of Zoology 82, 309-326. https://doi.org/10.1080/11250003.2015.1018352
  • Ball, G.F., & Balthazart, J. (2021). Evolutionary neuroscience: Are the brains of birds and mammals really so different? Current biology: CB 31, R840-R842. https://doi.org/10.1016/j.cub.2021.05.004
  • Barbour, K.W., Xing, Y.Y., Pena, E.A., & Berger, F.G. (2013). Characterization of the bipartite degron that regulates ubiquitin-independent degradation of thymidylate synthase. Bioscience Reports 33, 165-173. https://doi.org/10.1042/BSR20120112
  • Bartakova, V., Bryjova, A., Nicolas, V., Lavrenchenko, L.A., & Bryja, J. (2021). Mitogenomics of the endemic Ethiopian rats: looking for footprints of adaptive evolution in sky islands. Mitochondrion 57, 182-191. https://doi.org/10.1016/j.mito.2020.12.015
  • Bovenhuis, H., Visker, M., Poulsen, N.A., Sehested, J., van Valenberg, H., van Arendonk, J., Larsen, L.B., & Buitenhuis, A.J. (2016). Effects of the diacylglycerol o- acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk. Journal of Dairy Science 99, 3113-3123. https://doi.org/10.3168/jds.2015-10462
  • Canon-Beltran, K., Giraldo-Giraldo, J., Cajas, Y.N., Beltran-Brena, P., Hidalgo, C.O., Vasquez, N., Leal, C.L.V., Gutierrez-Adan, A., Gonzalez, E.M., & Rizos, D. (2020). Inhibiting diacylglycerol acyltransferase-1 reduces lipid biosynthesis in bovine blastocysts produced in vitro. Theriogenology 158, 267-276. https://doi.org/10.1016/j.theriogenology.2020.09.014
  • Chitraju, C., Walther, T.C., Farese, & R.V., Jr. (2019). The triglyceride synthesis enzymes DGAT1 and DGAT2 have distinct and overlapping functions in adipocytes. Journal of lipid research 60, 1112-1120. https://doi.org/10.1194/jlr.M093112
  • Da, S.V.D., Polveiro, R.C., Butler, T.J., Hackett, T.A., Braga, C.P., Puniya, B.L., Teixeira, W.F.P., de, M.P.P., Adamec, J., & Feitosa, F.L.F. (2021). An in silico, structural, and biological analysis of lactoferrin of different mammals. International journal of biological macromolecules 187, 119-126. https://doi.org/10.1016/j.ijbiomac.2021.07.102
  • Farmanullah, Hosseini, S.M., Liang, A., Hua, G., Rehman, Z.U., Talpur, H.S., Salim, M., Ahmad, S., Abulaiti, A., Khan, M., Safdar, M., Kakar, I.U., Ahmad, Z., Ahmad, M.Z., Tingzhu, Y., Schreurs, N.M., Bano, I., & Yang, L. (2020). Adaptive Molecular Evolution of AKT3 Gene for Positive Diversifying Selection in Mammals. BioMed research international 2020, 2584627. https://doi.org/10.1155/2020/2584627
  • Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., Lin, J., Minguez, P., Bork, P., von Mering, C., & Jensen, L.J. (2013). STRING v9.1: protein- protein interaction networks, with increased coverage and integration. Nucleic acids research 41, D808-815. https://doi.org/10.1093/nar/gks1094
  • Goto, H., Miyamoto, M., & Kihara, A. (2021). Direct uptake of sphingosine-1-phosphate independent of phospholipid phosphatases. The Journal of Biological Chemistry 296, 100605. https://doi.org/10.1016/j.jbc.2021.100605
  • Hua, C., Geng, Y., Niu, L., Chen, Q., Cai, L., Tao, S., Ni, Y., & Zhao, R. (2018). Stimulating lipolysis in subcutaneous adipose tissues by chronic dexamethasone administration in goats. Livestock Science 214, 62-67. https://doi.org/10.1016/j.livsci.2018.05.020
  • Jakobiec, F.A., Barrantes, P.C., Yonekawa, Y., Lad, E.M., & Proia, A.D. (2021). Subretinal Mononuclear Cells in Coats' Disease Studied with RPE65 and CD163: Evidence for Histiocytoid Pigment Epithelial Cells. American journal of ophthalmology 222, 388-396. https://doi.org/10.1016/j.ajo.2020.09.020
  • Jay, A.G., Simard, J.R., Huang, N., & Hamilton, J.A. (2020). SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation. Journal of lipid research 61, 790-807. https://doi.org/10.1194/jlr.RA120000648
  • Karis, P., Jaakson, H., Ling, K., Bruckmaier, R.M., Gross, J.J., Parn, P., Kaart, T., & Ots, M. (2020). Body condition and insulin resistance interactions with periparturient gene expression in adipose tissue and lipid metabolism in dairy cows. Journal of Dairy Science 103, 3708-3718. https://doi.org/10.3168/jds.2019-17373
  • Li, H., Zhao, X., Wang, J., Zong, M., & Yang, H. (2017). Bioinformatics analysis of gene expression profile data to screen key genes involved in pulmonary sarcoidosis. Gene 596, 98-104. https://doi.org/10.1016/j.gene.2016.09.037
  • Liu, J., Wang, Z., Li, J., Li, H., & Yang, L. (2020). Genome-wide identification of Diacylglycerol Acyltransferases (DGAT) family genes influencing Milk production in Buffalo. BMC genetics 21, 26. https://doi.org/10.1186/s12863-020-0832-y
  • Ma, D., Wang, Z., Merrikh, C.N., Lang, K.S., Lu, P., Li, X., Merrikh, H., Rao, Z., & Xu, W. (2018). Crystal structure of a membrane- bound O-acyltransferase. Nature 562, 286- 290. https://doi.org/10.1038/s41586-018- 0568-2
  • Madende, M., & Osthoff, G. (2019). Comparative genomics of casein genes. The Journal of Dairy Research 86, 323-330.Madende, M., & Osthoff, G. (2019). Comparative genomics of casein genes. Th. https://doi.org/10.1017/S0022029919000414
  • Maraschin, F.D.S., Kulcheski, F.R., Segatto, A.L.A., Trenz, T.S., Barrientos-Diaz, O., Margis-Pinheiro, M., Margis, R., & Turchetto-Zolet, A.C. (2019). Enzymes of glycerol-3-phosphate pathway in triacylglycerol synthesis in plants: Function, biotechnological application and evolution. Progress in lipid research 73, 46-64. https://doi.org/10.1016/j.plipres.2018.12.001
  • Mulaudzi-Masuku, T., Ikebudu, V., Muthevhuli, M., Faro, A., Gehring, C.A., & Iwuoha, E. (2019). Characterization and Expression Analysis of Heme Oxygenase Genes from Sorghum bicolor. Bioinformatics and biology insights 13, 1177932219860813. https://doi.org/10.1177/1177932219860813
  • Onodera, W., Asahi, T., & Sawamura, N. (2019). Positive selection of cereblon modified function including its E3 ubiquitin ligase activity and binding efficiency with AMPK. Molecular phylogenetics and evolution 135, 78-85. https://doi.org/10.1016/j.ympev.2019.03.001
  • Pasquali, C.C., Islam, Z., Adamoski, D., Ferreira, I.M., Righeto, R.D., Bettini, J., Portugal, R.V., Yue, W.W.-y., Gonzalez, A., Dias, S.M.G., & Ambrosio, A.L.B. (2017). The origin and evolution of human glutaminases and their atypical C-terminal ankyrin repeats. Journal of Biological Chemistry 292, 11572-11585. https://doi.org/10.1074/jbc.M117.787291
  • Pond, S.K., & Muse, S.V. (2005). Site-to-site variation of synonymous substitution rates. Molecular biology and evolution 22, 2375- 2385. https://doi.org/10.1093/molbev/msi232
  • Rao, V.S., Srinivas, K., Sujini, G.N., & Kumar, G.N. (2014). Protein-protein interaction detection: methods and analysis. International journal of proteomics 2014, 147648. https://doi.org/10.1155/2014/147648
  • Tabaran, A., Balteanu, V.A., Gal, E., Pusta, D., Mihaiu, R., Dan, S.D., Tabaran, A.F., & Mihaiu, M. (2015). Influence of DGAT1 K232A polymorphism on milk fat percentage and fatty acid profiles in Romanian Holstein cattle. Animal biotechnology 26, 105-111. https://doi.org/10.1080/10495398.2014.933740
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular biology and evolution 30, 2725- 2729. https://doi.org/10.1093/molbev/mst197
  • Vimala, M., Stella Mary, S., Ramalakshmi, R., Muthu, S., Niranjana Devi, R., & Irfan, A. (2021). Quantum computational studies on optimization, donor-acceptor analysis and solvent effect on reactive sites, global descriptors, non-linear optical parameters of Methyl N-Boc-piperidine-3-carboxylate. Journal of Molecular Liquids 343, 117608. https://doi.org/10.1016/j.molliq.2021.117608
  • Wang, M.S., Otecko, N.O., Wang, S., Wu, D.D., Yang, M.M., Xu, Y.L., Murphy, R.W., Peng, M.S., & Zhang, Y.P. (2017). An Evolutionary Genomic Perspective on the Breeding of Dwarf Chickens. Molecular biology and evolution 34, 3081-3088. https://doi.org/10.1093/molbev/msx227
  • Yang, J.R., Liao, B.Y., Zhuang, S.M., & Zhang, J. (2012). Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. Proceedings of the National Academy of Sciences of the United States of America 109, E831-840. https://doi.org/10.1073/pnas.1117408109
  • Ying, F., Gu, H., Xiong, Y., & Zuo, B. (2017). Analysis of Differentially Expressed Genes in Gastrocnemius Muscle between DGAT1 Transgenic Mice and Wild-Type Mice. BioMed research international 2017, 5404682. https://doi.org/10.1155/2017/5404682

Cite this article

    APA : Ali, A., Bakhtiari, M. N., & Shahid, A. (2023). Prescribing Practices of Broad-Spectrum Antibiotics in Tertiary Care Hospital. Global Drug Design & Development Review, VIII(III), 34-46. https://doi.org/10.31703/gdddr.2023(VIII-III).04
    CHICAGO : Ali, Ahmad, Maria Naz Bakhtiari, and Amna Shahid. 2023. "Prescribing Practices of Broad-Spectrum Antibiotics in Tertiary Care Hospital." Global Drug Design & Development Review, VIII (III): 34-46 doi: 10.31703/gdddr.2023(VIII-III).04
    HARVARD : ALI, A., BAKHTIARI, M. N. & SHAHID, A. 2023. Prescribing Practices of Broad-Spectrum Antibiotics in Tertiary Care Hospital. Global Drug Design & Development Review, VIII, 34-46.
    MHRA : Ali, Ahmad, Maria Naz Bakhtiari, and Amna Shahid. 2023. "Prescribing Practices of Broad-Spectrum Antibiotics in Tertiary Care Hospital." Global Drug Design & Development Review, VIII: 34-46
    MLA : Ali, Ahmad, Maria Naz Bakhtiari, and Amna Shahid. "Prescribing Practices of Broad-Spectrum Antibiotics in Tertiary Care Hospital." Global Drug Design & Development Review, VIII.III (2023): 34-46 Print.
    OXFORD : Ali, Ahmad, Bakhtiari, Maria Naz, and Shahid, Amna (2023), "Prescribing Practices of Broad-Spectrum Antibiotics in Tertiary Care Hospital", Global Drug Design & Development Review, VIII (III), 34-46
    TURABIAN : Ali, Ahmad, Maria Naz Bakhtiari, and Amna Shahid. "Prescribing Practices of Broad-Spectrum Antibiotics in Tertiary Care Hospital." Global Drug Design & Development Review VIII, no. III (2023): 34-46. https://doi.org/10.31703/gdddr.2023(VIII-III).04