ARTICLE

OPTIMIZATION OF PSEUDOMONAS PUTIDA SOL10 BIOSURFACTANT PRODUCTION USING COSTEFFECTIVE SUBSTRATES

01 Pages : 1-14

http://dx.doi.org/10.31703/gdddr.2023(VIII-IV).01      10.31703/gdddr.2023(VIII-IV).01      Published : Dec 2023

Optimization of Pseudomonas putida SOL10 Biosurfactant Production Using Cost-Effective Substrates

    Natural resources as a substitute energy source in recent technological advancements have resulted in the production of biosurfactants. In order to reduce production costs and maximise yield, the current work replaces expensive yeast extract with less expensive substrates and optimises temperature, pH, and agitation. Pseudomonas putida SOL10 produced biosurfactants using a variety of substrates, such as red beans, molasses, whey, potato peels, olive oil, castor oil, crude oil, kerosene oil, and leftover cooking oil. These sources were utilised singly with an inducer, urea. Surface tension and oil displacement assays were used to measure the generation of biosurfactants. The combination of 1% potato peels, 2% leftover cooking oil, and 0.1% urea produced the highest amount of biosurfactant at 30ËšC, 9.5 pH, and 150 rpm of agitation. There was a drop in surface tension of up to 29 mN/m with a 6.7 cm ODA zone.

    Biosurfactants, Biodegradability, Yeast Extract, Pseudomonas Putida SOL10
    (1) Bushra Rehman
    Assistant Professor, Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, KP, Pakistan.
    (2) Sadia Aslam
    Assistant Professor, Department of Microbiology, Quaid I Azam University Islamabad, Pakistan.
    (3) Safia Ahmed
    Department of Microbiology, Quaid I Azam University, Islamabad, Pakistan.
    (4) Hira Ikram
    Lecturer, Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, KP, Pakistan.
  • Al‐Tahhan, R. A., Sandrin, T. R., Bodour, A. A., & Maier, R. M. (2000). Rhamnolipid‐ Induced Removal of Lipopolysaccharide from Pseudomonas aeruginosa : Effect on Cell Surface Properties and Interaction with Hydrophobic Substrates. Applied and Environmental Microbiology, 66(8), 3262– 3268. https://doi.org/10.1128/aem.66.8.3262‐ 3268.2000 https://doi.org/10.1128/aem.66.8.3262‐3268.2000
  • Bodour, A. A., Drees, K. P. & Maier, R. M. (2003) ‘Distribution of biosurfactant‐producing bacteria in undisturbed and contaminated arid Southwestern soils.’, Applied and environmental microbiology. American Society for Microbiology, 69(6), pp. 3280–7. https://doi.org/10.1128/AEM.69.6.3280‐3287.2003
  • Cammarota, M. C. & Freire, D. M. G. (2006) ‘A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content’, Bioresource Technology, 97(17), pp. 2195–2210. https://doi.org/10.1016/j.biortech.2006.02.030
  • Daverey, A., & Pakshirajan, K. (2009) ‘Production, Characterization, and Properties of Sophorolipids from the Yeast Candida bombicola using a Low‐cost Fermentative Medium’, Applied Biochemistry and Biotechnology. Humana Press Inc, 158(3), pp. 663–674. https://doi.org/10.1007/s12010‐008‐8449‐z
  • Franzetti, A., Gandolfi, I., Bestetti, G., Smyth, T. J. P., & Banat, I. M. (2010) ‘Production and applications of trehalose lipid biosurfactants’, European Journal of Lipid Science and Technology. WILEY‐VCH Verlag, 112(6), pp. 617–627. https://doi.org/10.1002/ejlt.200900162
  • Henkel, M., Müller, M. M., Kügler, J. H., Lovaglio, R. B., Contiero, J., Syldatk, C., & Hausmann, R. (2012a) ‘Rhamnolipids as biosurfactants from renewable resources: Concepts for next‐generation rhamnolipid production’, Process Biochemistry. Elsevier Ltd, 47(8), pp. 1207–1219. https://doi.org/10.1016/j.procbio.2012.04.018
  • Kitamoto, D., Isoda, H., & Nakahara, T. (2002) ‘Functions and potential applications of glycolipid biosurfactants — from energy‐ saving materials to gene delivery carriers —’, Journal of Bioscience and Bioengineering, 94(3), pp. 187–201. https://doi.org/10.1016/S1389‐1723(02)80149‐9
  • Kuyukina, M. S., Ivshina, I. B., Makarov, S. O., Litvinenko, L. V., Cunningham, C. J., & Philp, J. C. (2005) ‘Effect of biosurfactants on crude oil desorption and mobilization in a soil system’, Environment International, 31(2), pp. 155–161. https://doi.org/10.1016/j.envint.2004.09.009
  • Makkar, R. S., Cameotra, S. S., & Banat, I. M. (2011) ‘Advances in utilization of renewable substrates for biosurfactant production.’, AMB Express, 1(1), p. 5. https://doi.org/10.1186/2191‐0855‐1‐5
  • Qazi, M. A., Malik, Z. A., Qureshi, G. D., Hameed, A. and Amed, S. (2013) ‘Yeast Extract as the Most Preferable Substrate for Optimized Biosurfactant Production by rhlB Gene Positive Pseudomonas putida SOL‐10 Isolate’, Journal of Bioremediation & Biodegradation, 4(7), pp. 1–10. doi: 10.4172/2155‐6199.1000204.
  • Rodrigues, L., Banat, I. M., Teixeira, J., & Oliveira, R. (2006) ‘Biosurfactants: potential applications in medicine’, Journal of Antimicrobial Chemotherapy. Oxford University Press, 57(4), pp. 609–618. https://doi.org/10.1093/jac/dkl024
  • Saravanan, V. and Vijayakumar, S. (2015) ‘Production of biosurfactant by Pseudomonas aeruginosa PB3A using agro‐ industrial wastes as a carbon source’, Malaysian Journal of Microbiology, 10(1), pp. 57–62.
  • Satpute, S. K., Banat, I. M., Dhakephalkar, P. K., Banpurkar, A. G., & Chopade, B. A. (2010) Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms’, Biotechnology Advances, 28(4), pp. 436–450. https://doi.org/10.1016/j.biotechadv.2010.02.006
  • Satpute, S. K., Bhawsar, B. D., Dhakephalkar, P. K. and Chopade, B. A. (2008) ‘Assessment of different screening methods for selecting biosurfactant producing marine bacteria. IJMS 37(3) [September 2008]. CSIR.
  • Shekhar, S., Sundaramanickam, A., & Balasubramanian, T. (2015) ‘Biosurfactant Producing Microbes and their Potential Applications: A Review’, Critical Reviews in Environmental Science and Technology, 45(14), pp. 1522–1554. https://doi.org/10.1080/10643389.2014.955631
  • Whang, L. M., Liu, P. W. G., Ma, C. C., & Cheng, S.‐S. (2008) ‘Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel‐contaminated water and soil’, Journal of Hazardous Materials, 151(1), pp. 155–163. https://doi.org/10.1016/j.jhazmat.2007.05.063

Cite this article

    APA : Rehman, B., Aslam, S., & Ahmed, S. (2023). Optimization of Pseudomonas putida SOL10 Biosurfactant Production Using Cost-Effective Substrates. Global Drug Design & Development Review, VIII(IV), 1-14. https://doi.org/10.31703/gdddr.2023(VIII-IV).01
    CHICAGO : Rehman, Bushra, Sadia Aslam, and Safia Ahmed. 2023. "Optimization of Pseudomonas putida SOL10 Biosurfactant Production Using Cost-Effective Substrates." Global Drug Design & Development Review, VIII (IV): 1-14 doi: 10.31703/gdddr.2023(VIII-IV).01
    HARVARD : REHMAN, B., ASLAM, S. & AHMED, S. 2023. Optimization of Pseudomonas putida SOL10 Biosurfactant Production Using Cost-Effective Substrates. Global Drug Design & Development Review, VIII, 1-14.
    MHRA : Rehman, Bushra, Sadia Aslam, and Safia Ahmed. 2023. "Optimization of Pseudomonas putida SOL10 Biosurfactant Production Using Cost-Effective Substrates." Global Drug Design & Development Review, VIII: 1-14
    MLA : Rehman, Bushra, Sadia Aslam, and Safia Ahmed. "Optimization of Pseudomonas putida SOL10 Biosurfactant Production Using Cost-Effective Substrates." Global Drug Design & Development Review, VIII.IV (2023): 1-14 Print.
    OXFORD : Rehman, Bushra, Aslam, Sadia, and Ahmed, Safia (2023), "Optimization of Pseudomonas putida SOL10 Biosurfactant Production Using Cost-Effective Substrates", Global Drug Design & Development Review, VIII (IV), 1-14
    TURABIAN : Rehman, Bushra, Sadia Aslam, and Safia Ahmed. "Optimization of Pseudomonas putida SOL10 Biosurfactant Production Using Cost-Effective Substrates." Global Drug Design & Development Review VIII, no. IV (2023): 1-14. https://doi.org/10.31703/gdddr.2023(VIII-IV).01