ARTICLE

EMERGING TRENDS IN NANOTHERANOSTICS PLATINUMBASED DRUG DELIVERY SYSTEMS FOR CANCER TREATMENT

03 Pages : 15-28

http://dx.doi.org/10.31703/gdddr.2023(VIII-II).03      10.31703/gdddr.2023(VIII-II).03      Published : Jun 2023

Emerging Trends in Nano-Theranostics: Platinum-based Drug Delivery Systems for Cancer Treatment

    Nanotechnology is the most common and frequently used technology that aims to improve the efficacy of medical procedures, sometimes known as Nanomedicine. With their impressive pharmacological efficacy as nanomedicines and delivery systems, nano materials have been recognized as attractive diagnostic and chemotherapeutic tools to treat diseases. To treat a wide range of solid malignant tumors, Drugs built on platinum complexes are now the foundation for many other therapies. They are often used to treat a varietym of solid tumors in the clinic, including head and neck, colorectal, lung and other malignancies. Cell-specific targeting with nano-carriers is possible using both active and passive techniques. This paper provides a thorough overview of platinum-based drug delivery system with the help of nanotechnology. Their mechanisms of action used in the treatment of cancer and potential for further development are all anticipated.

    Nanomedicines, Platinum Drugs, Chemotherapeutic, Pharmacological drugs
    (1) Samia Asif
    Department of Chemistry, School of Science, University of Management and Technology, Lahore, Punjab, Pakistan.
    (2) Sammia Shahid
    Department of Chemistry, School of Science, University of Management and Technology, Lahore, Punjab, Pakistan.
  • Advanced nanomedicine and cancer: Challenges and opportunities in clinical translation. (2021). International Journal of Pharmaceutics, 599, 120438. https://doi.org/10.1016/j.ijpharm.2021.120438
  • Ahn, J. S., Kang, Y.-K., Kim, T. Y., Bahng, H., Chang, H.-M., Kang, W., Kim, W. H., Lee, J. P., & Park, J. T. (2002). Nephrotoxicity of heptaplatin: a randomized comparison with cisplatin in advanced gastric cancer. Cancer Chemotherapy and Pharmacology, 50(2), 104–110. https://doi.org/10.1007/s00280-002-0483-x
  • Allen, G. M., & Lim, W. A. (2022). Rethinking cancer targeting strategies in the era of smart cell therapeutics. Nature Reviews Cancer, 22(12), 693–702. https://doi.org/10.1038/s41568-022-00505-x
  • Anarjan, F. S. (2019). Active targeting drug delivery nanocarriers: Ligands. Nano- Structures & Nano-Objects, 19, 100370. https://doi.org/10.1016/j.nanoso.2019.100370
  • Anselmo, A. C., & Mitragotri, S. (2019). Nanoparticles in the clinic: An update. Bioengineering & Translational Medicine, 4(3). https://doi.org/10.1002/btm2.10143
  • Bai, L., Gao, C., Liu, Q., Yu, C., Zhang, Z., Cai, L., & Liao, X. (2017). Research progress in modern structure of platinum complexes. European Journal of Medicinal Chemistry, 140, 349-382. https://doi.org/10.1016/j.ejmech.2017.09.034
  • Barnes, K. R., & Lippard, S. J. (2004). Cisplatin and related anticancer drugs: recent advances and insights. Metal Ions in Biological Systems, 42, 143-178
  • Biswas, R., Alam, M., Sarkar, A., Haque, M. I., Hasan, Md. M., & Hoque, M. (2022). Application of nanotechnology in food: processing, preservation, packaging and safety assessment. Heliyon, 8(11), e11795. https://doi.org/10.1016/j.heliyon.2022.e11795
  • Boca, S. C., Potara, M., Gabudean, A.-M., Juhem, A., Baldeck, P. L., & Astilean, S. (2011). Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Letters, 311(2), 131–140. https://doi.org/10.1016/j.canlet.2011.06.022
  • Chen, M., Xie, Y., Luo, Q., Xu, J., Ren, Y.-X., Liu, R., Zhao, H., Chen, Y., Feng, H., Du, Y.-F., Li, J.-W., Wang, G., & Lu, W.-L. (2022). Switchable nanoparticles complexing cisplatin for circumventing glutathione depletion in breast cancer chemotherapy. Chinese Chemical Letters, 34(5), 107744– 107744. https://doi.org/10.1016/j.cclet.2022.107744
  • Cheng, L., Gong, H., Zhu, W., Liu, J., Wang, X., Liu, G., & Liu, Z. (2014). PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy. Biomaterials, 35(37), 9844–9852. https://doi.org/10.1016/j.biomaterials.2014.09.004
  • Cheng, Z., Dai, Y., Kang, X., Li, C., Huang, S.-S., Lian, H., Hou, Z., Ma, P., & Lin, J. (2014). Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI. Biomaterials, 35(24), 6359–6368. https://doi.org/10.1016/j.biomaterials.2014.04.029
  • Cho, K., Wang, X., Nie, S., Chen, Z., & Shin, D. M. (2008). Therapeutic Nanoparticles for Drug Delivery in Cancer. Clinical Cancer Research, 14(5), 1310–1316. https://doi.org/10.1158/1078-0432.ccr-07-1441
  • Choi, C. H., Cha, Y. J., An, C. S., Kim, K. J., Kim, K. C., Moon, S. P., Lee, Z. H., & Min, Y. D. (2004). Molecular mechanisms of heptaplatin effective against cisplatin-resistant cancer cell lines: less involvement of metallothionein. Cancer cell international, 4(1), 6. https://doi.org/10.1186/1475-2867-4-6
  • Choti, M. A. (2009). Chemotherapy-Associated Hepatotoxicity: Do We Need to Be Concerned? Annals of Surgical Oncology, 16(9), 2391–2394. https://doi.org/10.1245/s10434-009-0512-7
  • Crucho, C. I. C., & Barros, M. T. (2017). Polymeric nanoparticles: A study on the preparation variables and characterization methods. Materials Science and Engineering: C, 80, 771–784. https://doi.org/10.1016/j.msec.2017.06.004
  • Eckardt, J. R., Bentsion, D. L., Lipatov, O., Polyakov, I. V., MacKintosh, F. R., Karlin, D., Baker, G., & Breitz, H. B. (2009). Phase II Study of Picoplatin As Second-Line Therapy for Patients With Small-Cell Lung Cancer. Journal of Clinical Oncology, 27(12), 2046–2051. https://doi.org/10.1200/jco.2008.19.3235
  • Elzoghby, A. O., Abd-Elwakil, M. M., Abd- Elsalam, K., Elsayed, M. M., Hashem, Y., & Mohamed, O. A. (2016). Natural Polymeric Nanoparticles for Brain-Targeting: Implications on Drug and Gene Delivery. Current Pharmaceutical Design, 22(22), 3305–3323. https://doi.org/10.2174/1381612822666160204120829
  • Galluzzi, L., Vitale, I., Abrams, J. M., Alnemri, E. S., Baehrecke, E. H., Blagosklonny, M. V., Dawson, T. M., Dawson, V. L., El-Deiry, W. S., Fulda, S., Gottlieb, E., Green, D. R., Hengartner, M. O., Kepp, O., Knight, R. A., Kumar, S., Lipton, S. A., Lu, X., Madeo, F., & Malorni, W. (2011). Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death & Differentiation, 19(1), 107–120. https://doi.org/10.1038/cdd.2011.96
  • Garbutcheon-Singh, K. B., Leverett, P., Myers, S., & Aldrich-Wright, J. R. (2013). Cytotoxic platinum(ii) intercalators that incorporate 1R,2R-diaminocyclopentane. Dalton Trans.,42(4), 918–926. https://doi.org/10.1039/c2dt31323e
  • Guari, Y., Cahu, M., Félix, G., Sene, S., Long, J., Chopineau, J., Devoisselle, J.-M., & Larionova, J. (2022). Nanoheterostructures based on nanosized Prussian blue and its Analogues: Design, properties and applications. Coordination Chemistry Reviews, 461, 214497–214497. https://doi.org/10.1016/j.ccr.2022.214497
  • Hamzah, R. N., Alghazali, K. M., Biris, A. S., & Griffin, R. J. (2022). Nanoparticle-Labeled Exosomes as Theranostic Agents: A Review. ACS Applied Nano Materials, 5(9), 12265– 12275. https://doi.org/10.1021/acsanm.2c01426
  • Hani, U., Begum, Y. M., Wahab, S., Siddiqua, A., Osmani, R. A. M., & Rahamathulla, M. (2021). A Comprehensive Review of Current Perspectives on Novel Drug Delivery Systems and Approaches for Lung Cancer Management. Journal of Pharmaceutical Innovation, Journal of Pharmaceutical Innovation(4). https://doi.org/10.1007/s12247-021-09582-1
  • Hosseini, M., Haji-Fatahaliha, M., Jadidi-Niaragh, F., Majidi, J., & Yousefi, M. (2015). The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy. Artificial Cells, Nanomedicine, and Biotechnology, 44(4), 1–11. https://doi.org/10.3109/21691401.2014.998830
  • Hu, Q., Sun, W., Wang, C., & Gu, Z. (2016). Recent advances of cocktail chemotherapy by combination drug delivery systems. Advanced Drug Delivery Reviews, 98, 19– 34. https://doi.org/10.1016/j.addr.2015.10.022
  • Imran, M., Rauf, A., Khan, I. A., Shahbaz, M., Qaisrani, T. B., Fatmawati, S., Abu-Izneid, T., Imran, A., Rahman, K. U., & Gondal, T. A. (2018). Thymoquinone: A novel strategy to combat cancer: A review. Biomedicine & Pharmacotherapy, 106, 390–402. https://doi.org/10.1016/j.biopha.2018.06.159
  • Iyer, A. K., Duan, Z., & Amiji, M. M. (2014). Nanodelivery Systems for Nucleic Acid Therapeutics in Drug Resistant Tumors. Molecular Pharmaceutics, 11(8), 2511–2526. https://doi.org/10.1021/mp500024p
  • Iyer, A. K., Singh, A., Ganta, S., & Amiji, M. M. (2013). Role of integrated cancer nanomedicine in overcoming drug resistance. Advanced Drug Delivery Reviews, 65(13-14), 1784–1802. https://doi.org/10.1016/j.addr.2013.07.012
  • Jain, S., Doshi, A. S., Iyer, A. K., & Amiji, M. M. (2013). Multifunctional nanoparticles for targeting cancer and inflammatory diseases. Journal of Drug Targeting, 21(10), 888–903. https://doi.org/10.3109/1061186x.2013.832769
  • Jodrell, D. I., Evans, T., Steward, W. P., Cameron, D., Prendiville, J., Aschele, C., Noberasco, C., Lind, M. J., Carmichael, J. C., Dobbs, N., Camboni, G., Gatti, B., & Filippo de Braud. (2004). Phase II studies of BBR3464, a novel tri-nuclear platinum complex, in patients with gastric or gastro-oesophageal adenocarcinoma. European Journal of Cancer, 40(12), 1872–1877. https://doi.org/10.1016/j.ejca.2004.04.032
  • Johnstone, T. C. (2014). The crystal structure of oxaliplatin: A case of overlooked pseudo symmetry. Polyhedron, 67, 429–435. https://doi.org/10.1016/j.poly.2013.10.003
  • Kapp, T., Dullin, A., & Gust, R. (2010). Platinum(II)Dendrimer Conjugates: Synthesis and Investigations on Cytotoxicity, Cellular Distribution, Platinum Release, DNA, and Protein Binding. Bioconjugate Chemistry, 21(2), 328–337. https://doi.org/10.1021/bc900406m
  • Kelland, L. (2007). The resurgence of platinum- based cancer chemotherapy. Nature Reviews Cancer, 7(8), 573–584. https://doi.org/10.1038/nrc2167
  • Koo, O. M., Rubinstein, I., & Onyuksel, H. (2005). Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: Nanotechnology, Biology and Medicine, 1(3), 193–212. https://doi.org/10.1016/j.nano.2005.06.004
  • Kuang, G., Zhang, Q., He, S., Wu, Y., & Huang, Y. (2020). Reduction-responsive disulfide linkage core-cross-linked polymeric micelles for site-specific drug delivery. Polymer Chemistry, 11(44), 7078–7086. https://doi.org/10.1039/d0py00987c
  • Lata, S., Sharma, G., Joshi, M., Kanwar, P., & Mishra, T. (2017). Role of nanotechnology in drug delivery. International Journal of Nanotechnology Nanoscience, 5, 1-29. http://dx.doi.org/10.20530/IJNN363
  • Li, J., & Burgess, D. J. (2020). Nanomedicine- based drug delivery towards tumor biological and immunological microenvironment. Acta Pharmaceutica Sinica B, 10(11), 2110–2124. https://doi.org/10.1016/j.apsb.2020.05.008
  • Li, J., & Burgess, D. J. (2020b). Nanomedicine- based drug delivery towards tumor biological and immunological microenvironment. Acta Pharmaceutica Sinica B, 10(11), 2110–2124. https://doi.org/10.1016/j.apsb.2020.05.008
  • Li, J., Yap, S. M., Chin, C. T., Tian, Q., Yoong, S. L., Pastorin, G., & Ang, W. H. (2012). Platinum(iv) prodrugs entrapped within multiwalled carbon nanotubes: Selective release by chemical reduction and hydrophobicity reversal. Chemical Science, 3(6), 2083. h ttps://doi.org/10.1039/c2sc01086k
  • Li, J., Yu, F., Chen, Y., & Oupický, D. (2015). Polymeric drugs: Advances in the development of pharmacologically active polymers. Journal of Controlled Release, 219, 369–382. https://doi.org/10.1016/j.jconrel.2015.09.043
  • Li, Y., & Lin, W. (2023). Platinum-based combination nanomedicines for cancer therapy. Current Opinion in Chemical Biology, 74, 102290. https://doi.org/10.1016/j.cbpa.2023.102290
  • Lian, H., Hu, M., Liu, C., Yamauchi, Y., & Wu, K. C. (2012). Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery. Chemical Communications,48(42), 5151. g https://doi.org/10.1039/c2cc31708
  • Ma, P., Xiao, H., Li, C., Dai, Y., Cheng, Z., Hou, Z., & Lin, J. (2015). Inorganic nanocarriers for platinum drug delivery. Materials Today, 18(10), 554–564. https://doi.org/10.1016/j.mattod.2015.05.017
  • Makadia, H. K., & Siegel, S. J. (2011). Poly Lactic- co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 3(3), 1377–1397. https://doi.org/10.3390/polym3031377
  • Masood, F. (2016). Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Materials Science and Engineering: C, 60, 569–578. https://doi.org/10.1016/j.msec.2015.11.067
  • McGoron, A. J. (2020). Perspectives on the Future of Nanomedicine to Impact Patients: An Analysis of US Federal Funding and Interventional Clinical Trials. Bioconjugate Chemistry, 31(3), 436–447. https://doi.org/10.1021/acs.bioconjchem.9b00818
  • Mitchell, M. E., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021c). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 20(2), 101–124. https://doi.org/10.1038/s41573-020-0090-8
  • Nevozhay, D., Kanska, U., Budzynska, R., & BoratyÅ„ski, J. (2007). [Current status of research on conjugates and related drug delivery systems in the treatment of cancer and other diseases]. PubMed, 61, 350–360. https://pubmed.ncbi.nlm.nih.gov/17554238
  • O. Elzoghby, A., M. Abd-Elwakil, M., Abd- Elsalam, K., T. Elsayed, M., Hashem, Y., & Mohamed, O. (2016). Natural Polymeric Nanoparticles for Brain-Targeting: Implications on Drug and Gene Delivery. Current Pharmaceutical Design, 22(22), 3305–3323. https://doi.org/10.2174/1381612822666160204120829
  • Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007),Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760. https://doi.org/10.1038/nnano.2007.387
  • Pelicano, H., Martin, D. S., Xu, R., & Huang, P. (2006). Glycolysis inhibition for anticancer treatment. Oncogene, 25(34), 4633–4646. https://doi.org/10.1038/sj.onc.1209597
  • Peng, H., Zhang, Y., Wang, G., Li, M., Bratlie, K. M., Cochran, E. W., & Wang, Q. (2015). Polymeric multifunctional nanomaterials for theranostics. Journal of Materials Chemistry B, 3(34), 6856–6870. https://doi.org/10.1039/c5tb00617a
  • Rani, A., Asgher, M., Qamar, S. A., & Khalid, N. (2019). Nanostructure-mediated Delivery of Therapeutic Drugs -A Comprehensive Review. ResearchGate. https://www.researchgate.net/publication/335841976_Nanostructure-mediated_Delivery_of_Therapeutic_Drugs_-A_Comprehensive_Review
  • Sahu, T., Ratre, Y. K., Chauhan, S., Bhaskar, L. V., Nair, M., & Verma, H. K. (2021). Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. Journal of Drug Delivery Science and Technology, 63, 102487. https://doi.org/10.1016/j.jddst.2021.102487
  • Sahu, T., Ratre, Y. K., Chauhan, S., Bhaskar, L. V., Nair, M., & Verma, H. K. (2021). Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. Journal of Drug Delivery Science and Technology, 63, 102487. https://doi.org/10.1016/j.jddst.2021.102487
  • Samet, J. M., Chiu, W. A., Cogliano, V., Jinot, J., Kriebel, D., Lunn, R. M., Beland, F. A., Bero, L., Browne, P., Fritschi, L., Kanno, J., Lachenmeier, D. W., Lan, Q., Lasfargues, G., Curieux, F. L., Peters, S., Shubat, P., Sone, H., White, M. A., . . . Wild, C. P. (2020). The IARC Monographs: Updated Procedures for Modern and Transparent Evidence Synthesis in Cancer Hazard Identification.Journal of the National Cancer Institute, 112(1), 30–37. https://doi.org/10.1093/jnci/djz169
  • Sau, S., Agarwalla, P., Mukherjee, S., Bag, I., Sreedhar, B., Pal-Bhadra, M., Patra, C. R., & Banerjee, R. (2014). Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor- targeted gold nanoparticle. Nanoscale, 6(12), 6745. https://doi.org/10.1039/c4nr00974f
  • Sau, S., Alsaab, H. O., Kashaw, S. K., Tatiparti, K., & Iyer, A. K. (2017). Advances in antibody– drug conjugates: A new era of targeted cancer therapy. Drug Discovery Today, 22(10), 1547–1556. https://doi.org/10.1016/j.drudis.2017.05.011
  • Sau, S., Tatiparti, K., Alsaab, H. O., Kashaw, S. K., & Iyer, A. K. (2018). A tumor multicomponent targeting chemoimmune drug delivery system for reprograming the tumor microenvironment and personalized cancer therapy. Drug Discovery Today, 23(7), 1344–1356. https://doi.org/10.1016/j.drudis.2018.03.003
  • Shinde, S. J., Satpute, D. P., Behera, S. K., & Kumar, D. (2022). Computational Biology of BRCA2 in Male Breast Cancer, through Prediction of Probable nsSNPs, and Hit Identification. ACS Omega, 7(34), 30447– 30461. https://doi.org/10.1021/acsomega.2c03851
  • Sobhana, S., Sarathy, N. P., Karthikeyan, L., Shanthi, K., & Vivek, R. (2023). Ultra-small NIR-Responsive Nanotheranostic Agent for Targeted Photothermal Ablation Induced Damage-Associated Molecular Patterns (DAMPs) from Post-PTT of Tumor Cells Activate Immunogenic Cell Death. Nanotheranostics, 7(1), 41–60. https://doi.org/10.7150/ntno.76720
  • Su, Y., Jiang, X. Y., Zheng, L. J., Yang, Y. W., Jiang, X. Y., Tian, Y., Weiwei, T., Liu, W. F., Teng, Z. G., Yao, H., Wang, S., & Zhang, L. J. (2022). Hybrid Au-star@Prussian blue for high-performance towards bimodal imaging and photothermal treatment. Journal of Colloid and Interface Science, 634, 601–609. https://doi.org/10.1016/j.jcis.2022.12.043
  • Tran, S., DeGiovanni, P., Piel, B., & Rai, P. (2017). Cancer nanomedicine: a review of recent success in drug delivery. Clinical and Translational Medicine, 6(1). https://doi.org/10.1186/s40169-017-0175-0
  • Tsang, R. Y., Al-Fayea, T. M., & Au, H. (2009). Cisplatin Overdose. Drug Safety, 32(12), 1109–1122. https://doi.org/10.2165/11316640-000000000-00000
  • Um, I. S., Armstrong-Gordon, E., Moussa, Y. E., Gnjidic, D., & Wheate, N. J. (2019). Platinum drugs in the Australian cancer chemotherapy healthcare setting: Is it worthwhile for chemists to continue to develop platinums? Inorganica Chimica Acta, 492, 177–181. https://doi.org/10.1016/j.ica.2019.04.023
  • Verma, H. K. (2019). Exosomes facilitate chemoresistance in gastric cancer: Future challenges and openings. Precision Radiation Oncology, 3(4), 163–164. https://doi.org/10.1002/pro6.1081
  • Wang, E., & Wang, A. H. (2014). Nanoparticles and their applications in cell and molecular biology. Integrative Biology, 6(1), 9–26. https://doi.org/10.1039/c3ib40165k
  • Wang, Q., Alshaker, H., Böhler, T., Srivats, S., Chao, Y., Cooper, C., & Pchejetski, D. (2017). Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-06142-x
  • Wang, X., Wang, X., & Guo, Z. (2015). Functionalization of Platinum Complexes for Biomedical Applications. Accounts of Chemical Research, 48(9), 2622–2631 https://doi.org/10.1021/acs.accounts.5b00203
  • Wani, S. P., Kaul, D., Mavuduru, R., Kakkar, N., & Bhatia, A. (2017). Urinary-exosomal miR- 2909: A novel pathognomonic trait of prostate cancer severity. Journal of Biotechnology, 259, 135–139. https://doi.org/10.1016/j.jbiotec.2017.07.029
  • Wheate, N. J., Walker, S., Craig, G. E., & Oun, R. (2010). The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Transactions, 39(35), 8113. https://doi.org/10.1039/c0dt00292e
  • Wheate, N. J., Walker, S., Craig, G. E., & Oun, R. (2010b). The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Transactions, 39(35), 8113. https://doi.org/10.1039/c0dt00292e
  • Wu, C., Zhou, X. S., & Wei, J. (2015). Localized Surface Plasmon Resonance of Silver Nanotriangles Synthesized by a Versatile Solution Reaction. Nanoscale Research Letters, 10(1). https://doi.org/10.1186/s11671-015-1058-1
  • Wurm, F. R., & Weiss, C. K. (2014). Nanoparticles from renewable polymers. Frontiers in Chemistry, 2. https://doi.org/10.3389/fchem.2014.00049
  • Xiao, H., Yan, L., Higbee-Dempsey, E., Song, W., Qi, R., Li, W., Huang, Y., Jing, X., Zhou, D., Ding, J., & Chen, X. (2018). Recent progress in polymer-based platinum drug delivery systems. Progress in Polymer Science, 87, 70–106. https://doi.org/10.1016/j.progpolymsci.2018.07.004
  • Xiao, H., Yan, L., Higbee-Dempsey, E., Song, W., Qi, R., Li, W., Huang, Y., Jing, X., Zhou, D., Ding, J., & Chen, X. (2018b). Recent progress in polymer-based platinum drug delivery systems. Progress in Polymer Science, 87, 70–106. https://doi.org/10.1016/j.progpolymsci.2018.07.004
  • Xiao, H., Yan, L., Higbee-Dempsey, E., Song, W., Qi, R., Li, W., Huang, Y., Jing, X., Zhou, D., Ding, J., & Chen, X. (2018c). Recent progress in polymer-based platinum drug delivery systems. Progress in Polymer Science, 87, 70–106. https://doi.org/10.1016/j.progpolymsci.2018.07.004
  • Xu, Z., Wang, Z., Deng, Z., & Zhu, G. (2021). Recent advances in the synthesis, stability, and activation of platinum(IV) anticancer prodrugs. Coordination Chemistry Reviews, 442, 213991. https://doi.org/10.1016/j.ccr.2021.213991
  • Zein, R., Sharrouf, W., & Selting, K. A. (2020). Physical Properties of Nanoparticles That Result in Improved Cancer Targeting. Journal of Oncology, 2020, 1–16. https://doi.org/10.1155/2020/5194780
  • Zhang, C., Xu, C., Gao, X., & Wang, L. (2022b). Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics, 12(5), 2115–2132. https://doi.org/10.7150/thno.69424
  • Zhang, Q., Kuang, G., Zhang, L., & Zhu, Y. (2023). Nanocarriers for platinum drug delivery. 2, 77–89. https://doi.org/10.1016/j.bmt.2022.11.011
  • Zhang, Q., Kuang, G., Zhou, D., Qi, Y., Wang, M., Li, X., & Huang, Y. (2020). Photoactivated polyprodrug nanoparticles for effective light- controlled Pt(iv) and siRNA codelivery to achieve synergistic cancer therapy. Journal of Materials Chemistry B, 8(27), 5903–5911. https://doi.org/10.1039/d0tb01103g
  • Zhang, Q., Wang, X., Kuang, G., Yu, Y., & Zhao, Y. (2022). Photopolymerized 3D Printing Scaffolds with Pt(IV) Prodrug Initiator for Postsurgical Tumor Treatment. Research, 2022. https://doi.org/10.34133/2022/9784510
  • Zhang, R., Hao, L., Chen, P., Zhang, G., & Liu, N. (2023). Multifunctional small-molecule theranostic agents for tumor-specific imaging and targeted chemotherapy. Bioorganic Chemistry, 137, 106576. https://doi.org/10.1016/j.bioorg.2023.106576

Cite this article

    APA : Asif, S., & Shahid, S. (2023). Emerging Trends in Nano-Theranostics: Platinum-based Drug Delivery Systems for Cancer Treatment. Global Drug Design & Development Review, VIII(II), 15-28. https://doi.org/10.31703/gdddr.2023(VIII-II).03
    CHICAGO : Asif, Samia, and Sammia Shahid. 2023. "Emerging Trends in Nano-Theranostics: Platinum-based Drug Delivery Systems for Cancer Treatment." Global Drug Design & Development Review, VIII (II): 15-28 doi: 10.31703/gdddr.2023(VIII-II).03
    HARVARD : ASIF, S. & SHAHID, S. 2023. Emerging Trends in Nano-Theranostics: Platinum-based Drug Delivery Systems for Cancer Treatment. Global Drug Design & Development Review, VIII, 15-28.
    MHRA : Asif, Samia, and Sammia Shahid. 2023. "Emerging Trends in Nano-Theranostics: Platinum-based Drug Delivery Systems for Cancer Treatment." Global Drug Design & Development Review, VIII: 15-28
    MLA : Asif, Samia, and Sammia Shahid. "Emerging Trends in Nano-Theranostics: Platinum-based Drug Delivery Systems for Cancer Treatment." Global Drug Design & Development Review, VIII.II (2023): 15-28 Print.
    OXFORD : Asif, Samia and Shahid, Sammia (2023), "Emerging Trends in Nano-Theranostics: Platinum-based Drug Delivery Systems for Cancer Treatment", Global Drug Design & Development Review, VIII (II), 15-28
    TURABIAN : Asif, Samia, and Sammia Shahid. "Emerging Trends in Nano-Theranostics: Platinum-based Drug Delivery Systems for Cancer Treatment." Global Drug Design & Development Review VIII, no. II (2023): 15-28. https://doi.org/10.31703/gdddr.2023(VIII-II).03