EMERGING TRENDS IN NANOTHERANOSTICS PLATINUMBASED DRUG DELIVERY SYSTEMS FOR CANCER TREATMENT

http://dx.doi.org/10.31703/gdddr.2023(VIII-II).03      10.31703/gdddr.2023(VIII-II).03      Published : Jun 2
Authored by : SamiaAsif , Sammia Shahid

03 Pages : 15-28

References

  • Advanced nanomedicine and cancer: Challenges and opportunities in clinical translation. (2021). International Journal of Pharmaceutics, 599, 120438. https://doi.org/10.1016/j.ijpharm.2021.120438
  • Ahn, J. S., Kang, Y.-K., Kim, T. Y., Bahng, H., Chang, H.-M., Kang, W., Kim, W. H., Lee, J. P., & Park, J. T. (2002). Nephrotoxicity of heptaplatin: a randomized comparison with cisplatin in advanced gastric cancer. Cancer Chemotherapy and Pharmacology, 50(2), 104–110. https://doi.org/10.1007/s00280-002-0483-x
  • Allen, G. M., & Lim, W. A. (2022). Rethinking cancer targeting strategies in the era of smart cell therapeutics. Nature Reviews Cancer, 22(12), 693–702. https://doi.org/10.1038/s41568-022-00505-x
  • Anarjan, F. S. (2019). Active targeting drug delivery nanocarriers: Ligands. Nano- Structures & Nano-Objects, 19, 100370. https://doi.org/10.1016/j.nanoso.2019.100370
  • Anselmo, A. C., & Mitragotri, S. (2019). Nanoparticles in the clinic: An update. Bioengineering & Translational Medicine, 4(3). https://doi.org/10.1002/btm2.10143
  • Bai, L., Gao, C., Liu, Q., Yu, C., Zhang, Z., Cai, L., & Liao, X. (2017). Research progress in modern structure of platinum complexes. European Journal of Medicinal Chemistry, 140, 349-382. https://doi.org/10.1016/j.ejmech.2017.09.034
  • Barnes, K. R., & Lippard, S. J. (2004). Cisplatin and related anticancer drugs: recent advances and insights. Metal Ions in Biological Systems, 42, 143-178
  • Biswas, R., Alam, M., Sarkar, A., Haque, M. I., Hasan, Md. M., & Hoque, M. (2022). Application of nanotechnology in food: processing, preservation, packaging and safety assessment. Heliyon, 8(11), e11795. https://doi.org/10.1016/j.heliyon.2022.e11795
  • Boca, S. C., Potara, M., Gabudean, A.-M., Juhem, A., Baldeck, P. L., & Astilean, S. (2011). Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Letters, 311(2), 131–140. https://doi.org/10.1016/j.canlet.2011.06.022
  • Chen, M., Xie, Y., Luo, Q., Xu, J., Ren, Y.-X., Liu, R., Zhao, H., Chen, Y., Feng, H., Du, Y.-F., Li, J.-W., Wang, G., & Lu, W.-L. (2022). Switchable nanoparticles complexing cisplatin for circumventing glutathione depletion in breast cancer chemotherapy. Chinese Chemical Letters, 34(5), 107744– 107744. https://doi.org/10.1016/j.cclet.2022.107744
  • Cheng, L., Gong, H., Zhu, W., Liu, J., Wang, X., Liu, G., & Liu, Z. (2014). PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy. Biomaterials, 35(37), 9844–9852. https://doi.org/10.1016/j.biomaterials.2014.09.004
  • Cheng, Z., Dai, Y., Kang, X., Li, C., Huang, S.-S., Lian, H., Hou, Z., Ma, P., & Lin, J. (2014). Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI. Biomaterials, 35(24), 6359–6368. https://doi.org/10.1016/j.biomaterials.2014.04.029
  • Cho, K., Wang, X., Nie, S., Chen, Z., & Shin, D. M. (2008). Therapeutic Nanoparticles for Drug Delivery in Cancer. Clinical Cancer Research, 14(5), 1310–1316. https://doi.org/10.1158/1078-0432.ccr-07-1441
  • Choi, C. H., Cha, Y. J., An, C. S., Kim, K. J., Kim, K. C., Moon, S. P., Lee, Z. H., & Min, Y. D. (2004). Molecular mechanisms of heptaplatin effective against cisplatin-resistant cancer cell lines: less involvement of metallothionein. Cancer cell international, 4(1), 6. https://doi.org/10.1186/1475-2867-4-6
  • Choti, M. A. (2009). Chemotherapy-Associated Hepatotoxicity: Do We Need to Be Concerned? Annals of Surgical Oncology, 16(9), 2391–2394. https://doi.org/10.1245/s10434-009-0512-7
  • Crucho, C. I. C., & Barros, M. T. (2017). Polymeric nanoparticles: A study on the preparation variables and characterization methods. Materials Science and Engineering: C, 80, 771–784. https://doi.org/10.1016/j.msec.2017.06.004
  • Eckardt, J. R., Bentsion, D. L., Lipatov, O., Polyakov, I. V., MacKintosh, F. R., Karlin, D., Baker, G., & Breitz, H. B. (2009). Phase II Study of Picoplatin As Second-Line Therapy for Patients With Small-Cell Lung Cancer. Journal of Clinical Oncology, 27(12), 2046–2051. https://doi.org/10.1200/jco.2008.19.3235
  • Elzoghby, A. O., Abd-Elwakil, M. M., Abd- Elsalam, K., Elsayed, M. M., Hashem, Y., & Mohamed, O. A. (2016). Natural Polymeric Nanoparticles for Brain-Targeting: Implications on Drug and Gene Delivery. Current Pharmaceutical Design, 22(22), 3305–3323. https://doi.org/10.2174/1381612822666160204120829
  • Galluzzi, L., Vitale, I., Abrams, J. M., Alnemri, E. S., Baehrecke, E. H., Blagosklonny, M. V., Dawson, T. M., Dawson, V. L., El-Deiry, W. S., Fulda, S., Gottlieb, E., Green, D. R., Hengartner, M. O., Kepp, O., Knight, R. A., Kumar, S., Lipton, S. A., Lu, X., Madeo, F., & Malorni, W. (2011). Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death & Differentiation, 19(1), 107–120. https://doi.org/10.1038/cdd.2011.96
  • Garbutcheon-Singh, K. B., Leverett, P., Myers, S., & Aldrich-Wright, J. R. (2013). Cytotoxic platinum(ii) intercalators that incorporate 1R,2R-diaminocyclopentane. Dalton Trans.,42(4), 918–926. https://doi.org/10.1039/c2dt31323e
  • Guari, Y., Cahu, M., Félix, G., Sene, S., Long, J., Chopineau, J., Devoisselle, J.-M., & Larionova, J. (2022). Nanoheterostructures based on nanosized Prussian blue and its Analogues: Design, properties and applications. Coordination Chemistry Reviews, 461, 214497–214497. https://doi.org/10.1016/j.ccr.2022.214497
  • Hamzah, R. N., Alghazali, K. M., Biris, A. S., & Griffin, R. J. (2022). Nanoparticle-Labeled Exosomes as Theranostic Agents: A Review. ACS Applied Nano Materials, 5(9), 12265– 12275. https://doi.org/10.1021/acsanm.2c01426
  • Hani, U., Begum, Y. M., Wahab, S., Siddiqua, A., Osmani, R. A. M., & Rahamathulla, M. (2021). A Comprehensive Review of Current Perspectives on Novel Drug Delivery Systems and Approaches for Lung Cancer Management. Journal of Pharmaceutical Innovation, Journal of Pharmaceutical Innovation(4). https://doi.org/10.1007/s12247-021-09582-1
  • Hosseini, M., Haji-Fatahaliha, M., Jadidi-Niaragh, F., Majidi, J., & Yousefi, M. (2015). The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy. Artificial Cells, Nanomedicine, and Biotechnology, 44(4), 1–11. https://doi.org/10.3109/21691401.2014.998830
  • Hu, Q., Sun, W., Wang, C., & Gu, Z. (2016). Recent advances of cocktail chemotherapy by combination drug delivery systems. Advanced Drug Delivery Reviews, 98, 19– 34. https://doi.org/10.1016/j.addr.2015.10.022
  • Imran, M., Rauf, A., Khan, I. A., Shahbaz, M., Qaisrani, T. B., Fatmawati, S., Abu-Izneid, T., Imran, A., Rahman, K. U., & Gondal, T. A. (2018). Thymoquinone: A novel strategy to combat cancer: A review. Biomedicine & Pharmacotherapy, 106, 390–402. https://doi.org/10.1016/j.biopha.2018.06.159
  • Iyer, A. K., Duan, Z., & Amiji, M. M. (2014). Nanodelivery Systems for Nucleic Acid Therapeutics in Drug Resistant Tumors. Molecular Pharmaceutics, 11(8), 2511–2526. https://doi.org/10.1021/mp500024p
  • Iyer, A. K., Singh, A., Ganta, S., & Amiji, M. M. (2013). Role of integrated cancer nanomedicine in overcoming drug resistance. Advanced Drug Delivery Reviews, 65(13-14), 1784–1802. https://doi.org/10.1016/j.addr.2013.07.012
  • Jain, S., Doshi, A. S., Iyer, A. K., & Amiji, M. M. (2013). Multifunctional nanoparticles for targeting cancer and inflammatory diseases. Journal of Drug Targeting, 21(10), 888–903. https://doi.org/10.3109/1061186x.2013.832769
  • Jodrell, D. I., Evans, T., Steward, W. P., Cameron, D., Prendiville, J., Aschele, C., Noberasco, C., Lind, M. J., Carmichael, J. C., Dobbs, N., Camboni, G., Gatti, B., & Filippo de Braud. (2004). Phase II studies of BBR3464, a novel tri-nuclear platinum complex, in patients with gastric or gastro-oesophageal adenocarcinoma. European Journal of Cancer, 40(12), 1872–1877. https://doi.org/10.1016/j.ejca.2004.04.032
  • Johnstone, T. C. (2014). The crystal structure of oxaliplatin: A case of overlooked pseudo symmetry. Polyhedron, 67, 429–435. https://doi.org/10.1016/j.poly.2013.10.003
  • Kapp, T., Dullin, A., & Gust, R. (2010). Platinum(II)Dendrimer Conjugates: Synthesis and Investigations on Cytotoxicity, Cellular Distribution, Platinum Release, DNA, and Protein Binding. Bioconjugate Chemistry, 21(2), 328–337. https://doi.org/10.1021/bc900406m
  • Kelland, L. (2007). The resurgence of platinum- based cancer chemotherapy. Nature Reviews Cancer, 7(8), 573–584. https://doi.org/10.1038/nrc2167
  • Koo, O. M., Rubinstein, I., & Onyuksel, H. (2005). Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: Nanotechnology, Biology and Medicine, 1(3), 193–212. https://doi.org/10.1016/j.nano.2005.06.004
  • Kuang, G., Zhang, Q., He, S., Wu, Y., & Huang, Y. (2020). Reduction-responsive disulfide linkage core-cross-linked polymeric micelles for site-specific drug delivery. Polymer Chemistry, 11(44), 7078–7086. https://doi.org/10.1039/d0py00987c
  • Lata, S., Sharma, G., Joshi, M., Kanwar, P., & Mishra, T. (2017). Role of nanotechnology in drug delivery. International Journal of Nanotechnology Nanoscience, 5, 1-29. http://dx.doi.org/10.20530/IJNN363
  • Li, J., & Burgess, D. J. (2020). Nanomedicine- based drug delivery towards tumor biological and immunological microenvironment. Acta Pharmaceutica Sinica B, 10(11), 2110–2124. https://doi.org/10.1016/j.apsb.2020.05.008
  • Li, J., & Burgess, D. J. (2020b). Nanomedicine- based drug delivery towards tumor biological and immunological microenvironment. Acta Pharmaceutica Sinica B, 10(11), 2110–2124. https://doi.org/10.1016/j.apsb.2020.05.008
  • Li, J., Yap, S. M., Chin, C. T., Tian, Q., Yoong, S. L., Pastorin, G., & Ang, W. H. (2012). Platinum(iv) prodrugs entrapped within multiwalled carbon nanotubes: Selective release by chemical reduction and hydrophobicity reversal. Chemical Science, 3(6), 2083. h ttps://doi.org/10.1039/c2sc01086k
  • Li, J., Yu, F., Chen, Y., & Oupický, D. (2015). Polymeric drugs: Advances in the development of pharmacologically active polymers. Journal of Controlled Release, 219, 369–382. https://doi.org/10.1016/j.jconrel.2015.09.043
  • Li, Y., & Lin, W. (2023). Platinum-based combination nanomedicines for cancer therapy. Current Opinion in Chemical Biology, 74, 102290. https://doi.org/10.1016/j.cbpa.2023.102290
  • Lian, H., Hu, M., Liu, C., Yamauchi, Y., & Wu, K. C. (2012). Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery. Chemical Communications,48(42), 5151. g https://doi.org/10.1039/c2cc31708
  • Ma, P., Xiao, H., Li, C., Dai, Y., Cheng, Z., Hou, Z., & Lin, J. (2015). Inorganic nanocarriers for platinum drug delivery. Materials Today, 18(10), 554–564. https://doi.org/10.1016/j.mattod.2015.05.017
  • Makadia, H. K., & Siegel, S. J. (2011). Poly Lactic- co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 3(3), 1377–1397. https://doi.org/10.3390/polym3031377
  • Masood, F. (2016). Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Materials Science and Engineering: C, 60, 569–578. https://doi.org/10.1016/j.msec.2015.11.067
  • McGoron, A. J. (2020). Perspectives on the Future of Nanomedicine to Impact Patients: An Analysis of US Federal Funding and Interventional Clinical Trials. Bioconjugate Chemistry, 31(3), 436–447. https://doi.org/10.1021/acs.bioconjchem.9b00818
  • Mitchell, M. E., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021c). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 20(2), 101–124. https://doi.org/10.1038/s41573-020-0090-8
  • Nevozhay, D., Kanska, U., Budzynska, R., & BoratyÅ„ski, J. (2007). [Current status of research on conjugates and related drug delivery systems in the treatment of cancer and other diseases]. PubMed, 61, 350–360. https://pubmed.ncbi.nlm.nih.gov/17554238
  • O. Elzoghby, A., M. Abd-Elwakil, M., Abd- Elsalam, K., T. Elsayed, M., Hashem, Y., & Mohamed, O. (2016). Natural Polymeric Nanoparticles for Brain-Targeting: Implications on Drug and Gene Delivery. Current Pharmaceutical Design, 22(22), 3305–3323. https://doi.org/10.2174/1381612822666160204120829
  • Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007),Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760. https://doi.org/10.1038/nnano.2007.387
  • Pelicano, H., Martin, D. S., Xu, R., & Huang, P. (2006). Glycolysis inhibition for anticancer treatment. Oncogene, 25(34), 4633–4646. https://doi.org/10.1038/sj.onc.1209597
  • Peng, H., Zhang, Y., Wang, G., Li, M., Bratlie, K. M., Cochran, E. W., & Wang, Q. (2015). Polymeric multifunctional nanomaterials for theranostics. Journal of Materials Chemistry B, 3(34), 6856–6870. https://doi.org/10.1039/c5tb00617a
  • Rani, A., Asgher, M., Qamar, S. A., & Khalid, N. (2019). Nanostructure-mediated Delivery of Therapeutic Drugs -A Comprehensive Review. ResearchGate. https://www.researchgate.net/publication/335841976_Nanostructure-mediated_Delivery_of_Therapeutic_Drugs_-A_Comprehensive_Review
  • Sahu, T., Ratre, Y. K., Chauhan, S., Bhaskar, L. V., Nair, M., & Verma, H. K. (2021). Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. Journal of Drug Delivery Science and Technology, 63, 102487. https://doi.org/10.1016/j.jddst.2021.102487
  • Sahu, T., Ratre, Y. K., Chauhan, S., Bhaskar, L. V., Nair, M., & Verma, H. K. (2021). Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. Journal of Drug Delivery Science and Technology, 63, 102487. https://doi.org/10.1016/j.jddst.2021.102487
  • Samet, J. M., Chiu, W. A., Cogliano, V., Jinot, J., Kriebel, D., Lunn, R. M., Beland, F. A., Bero, L., Browne, P., Fritschi, L., Kanno, J., Lachenmeier, D. W., Lan, Q., Lasfargues, G., Curieux, F. L., Peters, S., Shubat, P., Sone, H., White, M. A., . . . Wild, C. P. (2020). The IARC Monographs: Updated Procedures for Modern and Transparent Evidence Synthesis in Cancer Hazard Identification.Journal of the National Cancer Institute, 112(1), 30–37. https://doi.org/10.1093/jnci/djz169
  • Sau, S., Agarwalla, P., Mukherjee, S., Bag, I., Sreedhar, B., Pal-Bhadra, M., Patra, C. R., & Banerjee, R. (2014). Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor- targeted gold nanoparticle. Nanoscale, 6(12), 6745. https://doi.org/10.1039/c4nr00974f
  • Sau, S., Alsaab, H. O., Kashaw, S. K., Tatiparti, K., & Iyer, A. K. (2017). Advances in antibody– drug conjugates: A new era of targeted cancer therapy. Drug Discovery Today, 22(10), 1547–1556. https://doi.org/10.1016/j.drudis.2017.05.011
  • Sau, S., Tatiparti, K., Alsaab, H. O., Kashaw, S. K., & Iyer, A. K. (2018). A tumor multicomponent targeting chemoimmune drug delivery system for reprograming the tumor microenvironment and personalized cancer therapy. Drug Discovery Today, 23(7), 1344–1356. https://doi.org/10.1016/j.drudis.2018.03.003
  • Shinde, S. J., Satpute, D. P., Behera, S. K., & Kumar, D. (2022). Computational Biology of BRCA2 in Male Breast Cancer, through Prediction of Probable nsSNPs, and Hit Identification. ACS Omega, 7(34), 30447– 30461. https://doi.org/10.1021/acsomega.2c03851
  • Sobhana, S., Sarathy, N. P., Karthikeyan, L., Shanthi, K., & Vivek, R. (2023). Ultra-small NIR-Responsive Nanotheranostic Agent for Targeted Photothermal Ablation Induced Damage-Associated Molecular Patterns (DAMPs) from Post-PTT of Tumor Cells Activate Immunogenic Cell Death. Nanotheranostics, 7(1), 41–60. https://doi.org/10.7150/ntno.76720
  • Su, Y., Jiang, X. Y., Zheng, L. J., Yang, Y. W., Jiang, X. Y., Tian, Y., Weiwei, T., Liu, W. F., Teng, Z. G., Yao, H., Wang, S., & Zhang, L. J. (2022). Hybrid Au-star@Prussian blue for high-performance towards bimodal imaging and photothermal treatment. Journal of Colloid and Interface Science, 634, 601–609. https://doi.org/10.1016/j.jcis.2022.12.043
  • Tran, S., DeGiovanni, P., Piel, B., & Rai, P. (2017). Cancer nanomedicine: a review of recent success in drug delivery. Clinical and Translational Medicine, 6(1). https://doi.org/10.1186/s40169-017-0175-0
  • Tsang, R. Y., Al-Fayea, T. M., & Au, H. (2009). Cisplatin Overdose. Drug Safety, 32(12), 1109–1122. https://doi.org/10.2165/11316640-000000000-00000
  • Um, I. S., Armstrong-Gordon, E., Moussa, Y. E., Gnjidic, D., & Wheate, N. J. (2019). Platinum drugs in the Australian cancer chemotherapy healthcare setting: Is it worthwhile for chemists to continue to develop platinums? Inorganica Chimica Acta, 492, 177–181. https://doi.org/10.1016/j.ica.2019.04.023
  • Verma, H. K. (2019). Exosomes facilitate chemoresistance in gastric cancer: Future challenges and openings. Precision Radiation Oncology, 3(4), 163–164. https://doi.org/10.1002/pro6.1081
  • Wang, E., & Wang, A. H. (2014). Nanoparticles and their applications in cell and molecular biology. Integrative Biology, 6(1), 9–26. https://doi.org/10.1039/c3ib40165k
  • Wang, Q., Alshaker, H., Böhler, T., Srivats, S., Chao, Y., Cooper, C., & Pchejetski, D. (2017). Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-06142-x
  • Wang, X., Wang, X., & Guo, Z. (2015). Functionalization of Platinum Complexes for Biomedical Applications. Accounts of Chemical Research, 48(9), 2622–2631 https://doi.org/10.1021/acs.accounts.5b00203
  • Wani, S. P., Kaul, D., Mavuduru, R., Kakkar, N., & Bhatia, A. (2017). Urinary-exosomal miR- 2909: A novel pathognomonic trait of prostate cancer severity. Journal of Biotechnology, 259, 135–139. https://doi.org/10.1016/j.jbiotec.2017.07.029
  • Wheate, N. J., Walker, S., Craig, G. E., & Oun, R. (2010). The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Transactions, 39(35), 8113. https://doi.org/10.1039/c0dt00292e
  • Wheate, N. J., Walker, S., Craig, G. E., & Oun, R. (2010b). The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Transactions, 39(35), 8113. https://doi.org/10.1039/c0dt00292e
  • Wu, C., Zhou, X. S., & Wei, J. (2015). Localized Surface Plasmon Resonance of Silver Nanotriangles Synthesized by a Versatile Solution Reaction. Nanoscale Research Letters, 10(1). https://doi.org/10.1186/s11671-015-1058-1
  • Wurm, F. R., & Weiss, C. K. (2014). Nanoparticles from renewable polymers. Frontiers in Chemistry, 2. https://doi.org/10.3389/fchem.2014.00049
  • Xiao, H., Yan, L., Higbee-Dempsey, E., Song, W., Qi, R., Li, W., Huang, Y., Jing, X., Zhou, D., Ding, J., & Chen, X. (2018). Recent progress in polymer-based platinum drug delivery systems. Progress in Polymer Science, 87, 70–106. https://doi.org/10.1016/j.progpolymsci.2018.07.004
  • Xiao, H., Yan, L., Higbee-Dempsey, E., Song, W., Qi, R., Li, W., Huang, Y., Jing, X., Zhou, D., Ding, J., & Chen, X. (2018b). Recent progress in polymer-based platinum drug delivery systems. Progress in Polymer Science, 87, 70–106. https://doi.org/10.1016/j.progpolymsci.2018.07.004
  • Xiao, H., Yan, L., Higbee-Dempsey, E., Song, W., Qi, R., Li, W., Huang, Y., Jing, X., Zhou, D., Ding, J., & Chen, X. (2018c). Recent progress in polymer-based platinum drug delivery systems. Progress in Polymer Science, 87, 70–106. https://doi.org/10.1016/j.progpolymsci.2018.07.004
  • Xu, Z., Wang, Z., Deng, Z., & Zhu, G. (2021). Recent advances in the synthesis, stability, and activation of platinum(IV) anticancer prodrugs. Coordination Chemistry Reviews, 442, 213991. https://doi.org/10.1016/j.ccr.2021.213991
  • Zein, R., Sharrouf, W., & Selting, K. A. (2020). Physical Properties of Nanoparticles That Result in Improved Cancer Targeting. Journal of Oncology, 2020, 1–16. https://doi.org/10.1155/2020/5194780
  • Zhang, C., Xu, C., Gao, X., & Wang, L. (2022b). Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics, 12(5), 2115–2132. https://doi.org/10.7150/thno.69424
  • Zhang, Q., Kuang, G., Zhang, L., & Zhu, Y. (2023). Nanocarriers for platinum drug delivery. 2, 77–89. https://doi.org/10.1016/j.bmt.2022.11.011
  • Zhang, Q., Kuang, G., Zhou, D., Qi, Y., Wang, M., Li, X., & Huang, Y. (2020). Photoactivated polyprodrug nanoparticles for effective light- controlled Pt(iv) and siRNA codelivery to achieve synergistic cancer therapy. Journal of Materials Chemistry B, 8(27), 5903–5911. https://doi.org/10.1039/d0tb01103g
  • Zhang, Q., Wang, X., Kuang, G., Yu, Y., & Zhao, Y. (2022). Photopolymerized 3D Printing Scaffolds with Pt(IV) Prodrug Initiator for Postsurgical Tumor Treatment. Research, 2022. https://doi.org/10.34133/2022/9784510
  • Zhang, R., Hao, L., Chen, P., Zhang, G., & Liu, N. (2023). Multifunctional small-molecule theranostic agents for tumor-specific imaging and targeted chemotherapy. Bioorganic Chemistry, 137, 106576. https://doi.org/10.1016/j.bioorg.2023.106576
  • Advanced nanomedicine and cancer: Challenges and opportunities in clinical translation. (2021). International Journal of Pharmaceutics, 599, 120438. https://doi.org/10.1016/j.ijpharm.2021.120438
  • Ahn, J. S., Kang, Y.-K., Kim, T. Y., Bahng, H., Chang, H.-M., Kang, W., Kim, W. H., Lee, J. P., & Park, J. T. (2002). Nephrotoxicity of heptaplatin: a randomized comparison with cisplatin in advanced gastric cancer. Cancer Chemotherapy and Pharmacology, 50(2), 104–110. https://doi.org/10.1007/s00280-002-0483-x
  • Allen, G. M., & Lim, W. A. (2022). Rethinking cancer targeting strategies in the era of smart cell therapeutics. Nature Reviews Cancer, 22(12), 693–702. https://doi.org/10.1038/s41568-022-00505-x
  • Anarjan, F. S. (2019). Active targeting drug delivery nanocarriers: Ligands. Nano- Structures & Nano-Objects, 19, 100370. https://doi.org/10.1016/j.nanoso.2019.100370
  • Anselmo, A. C., & Mitragotri, S. (2019). Nanoparticles in the clinic: An update. Bioengineering & Translational Medicine, 4(3). https://doi.org/10.1002/btm2.10143
  • Bai, L., Gao, C., Liu, Q., Yu, C., Zhang, Z., Cai, L., & Liao, X. (2017). Research progress in modern structure of platinum complexes. European Journal of Medicinal Chemistry, 140, 349-382. https://doi.org/10.1016/j.ejmech.2017.09.034
  • Barnes, K. R., & Lippard, S. J. (2004). Cisplatin and related anticancer drugs: recent advances and insights. Metal Ions in Biological Systems, 42, 143-178
  • Biswas, R., Alam, M., Sarkar, A., Haque, M. I., Hasan, Md. M., & Hoque, M. (2022). Application of nanotechnology in food: processing, preservation, packaging and safety assessment. Heliyon, 8(11), e11795. https://doi.org/10.1016/j.heliyon.2022.e11795
  • Boca, S. C., Potara, M., Gabudean, A.-M., Juhem, A., Baldeck, P. L., & Astilean, S. (2011). Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Letters, 311(2), 131–140. https://doi.org/10.1016/j.canlet.2011.06.022
  • Chen, M., Xie, Y., Luo, Q., Xu, J., Ren, Y.-X., Liu, R., Zhao, H., Chen, Y., Feng, H., Du, Y.-F., Li, J.-W., Wang, G., & Lu, W.-L. (2022). Switchable nanoparticles complexing cisplatin for circumventing glutathione depletion in breast cancer chemotherapy. Chinese Chemical Letters, 34(5), 107744– 107744. https://doi.org/10.1016/j.cclet.2022.107744
  • Cheng, L., Gong, H., Zhu, W., Liu, J., Wang, X., Liu, G., & Liu, Z. (2014). PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy. Biomaterials, 35(37), 9844–9852. https://doi.org/10.1016/j.biomaterials.2014.09.004
  • Cheng, Z., Dai, Y., Kang, X., Li, C., Huang, S.-S., Lian, H., Hou, Z., Ma, P., & Lin, J. (2014). Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI. Biomaterials, 35(24), 6359–6368. https://doi.org/10.1016/j.biomaterials.2014.04.029
  • Cho, K., Wang, X., Nie, S., Chen, Z., & Shin, D. M. (2008). Therapeutic Nanoparticles for Drug Delivery in Cancer. Clinical Cancer Research, 14(5), 1310–1316. https://doi.org/10.1158/1078-0432.ccr-07-1441
  • Choi, C. H., Cha, Y. J., An, C. S., Kim, K. J., Kim, K. C., Moon, S. P., Lee, Z. H., & Min, Y. D. (2004). Molecular mechanisms of heptaplatin effective against cisplatin-resistant cancer cell lines: less involvement of metallothionein. Cancer cell international, 4(1), 6. https://doi.org/10.1186/1475-2867-4-6
  • Choti, M. A. (2009). Chemotherapy-Associated Hepatotoxicity: Do We Need to Be Concerned? Annals of Surgical Oncology, 16(9), 2391–2394. https://doi.org/10.1245/s10434-009-0512-7
  • Crucho, C. I. C., & Barros, M. T. (2017). Polymeric nanoparticles: A study on the preparation variables and characterization methods. Materials Science and Engineering: C, 80, 771–784. https://doi.org/10.1016/j.msec.2017.06.004
  • Eckardt, J. R., Bentsion, D. L., Lipatov, O., Polyakov, I. V., MacKintosh, F. R., Karlin, D., Baker, G., & Breitz, H. B. (2009). Phase II Study of Picoplatin As Second-Line Therapy for Patients With Small-Cell Lung Cancer. Journal of Clinical Oncology, 27(12), 2046–2051. https://doi.org/10.1200/jco.2008.19.3235
  • Elzoghby, A. O., Abd-Elwakil, M. M., Abd- Elsalam, K., Elsayed, M. M., Hashem, Y., & Mohamed, O. A. (2016). Natural Polymeric Nanoparticles for Brain-Targeting: Implications on Drug and Gene Delivery. Current Pharmaceutical Design, 22(22), 3305–3323. https://doi.org/10.2174/1381612822666160204120829
  • Galluzzi, L., Vitale, I., Abrams, J. M., Alnemri, E. S., Baehrecke, E. H., Blagosklonny, M. V., Dawson, T. M., Dawson, V. L., El-Deiry, W. S., Fulda, S., Gottlieb, E., Green, D. R., Hengartner, M. O., Kepp, O., Knight, R. A., Kumar, S., Lipton, S. A., Lu, X., Madeo, F., & Malorni, W. (2011). Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death & Differentiation, 19(1), 107–120. https://doi.org/10.1038/cdd.2011.96
  • Garbutcheon-Singh, K. B., Leverett, P., Myers, S., & Aldrich-Wright, J. R. (2013). Cytotoxic platinum(ii) intercalators that incorporate 1R,2R-diaminocyclopentane. Dalton Trans.,42(4), 918–926. https://doi.org/10.1039/c2dt31323e
  • Guari, Y., Cahu, M., Félix, G., Sene, S., Long, J., Chopineau, J., Devoisselle, J.-M., & Larionova, J. (2022). Nanoheterostructures based on nanosized Prussian blue and its Analogues: Design, properties and applications. Coordination Chemistry Reviews, 461, 214497–214497. https://doi.org/10.1016/j.ccr.2022.214497
  • Hamzah, R. N., Alghazali, K. M., Biris, A. S., & Griffin, R. J. (2022). Nanoparticle-Labeled Exosomes as Theranostic Agents: A Review. ACS Applied Nano Materials, 5(9), 12265– 12275. https://doi.org/10.1021/acsanm.2c01426
  • Hani, U., Begum, Y. M., Wahab, S., Siddiqua, A., Osmani, R. A. M., & Rahamathulla, M. (2021). A Comprehensive Review of Current Perspectives on Novel Drug Delivery Systems and Approaches for Lung Cancer Management. Journal of Pharmaceutical Innovation, Journal of Pharmaceutical Innovation(4). https://doi.org/10.1007/s12247-021-09582-1
  • Hosseini, M., Haji-Fatahaliha, M., Jadidi-Niaragh, F., Majidi, J., & Yousefi, M. (2015). The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy. Artificial Cells, Nanomedicine, and Biotechnology, 44(4), 1–11. https://doi.org/10.3109/21691401.2014.998830
  • Hu, Q., Sun, W., Wang, C., & Gu, Z. (2016). Recent advances of cocktail chemotherapy by combination drug delivery systems. Advanced Drug Delivery Reviews, 98, 19– 34. https://doi.org/10.1016/j.addr.2015.10.022
  • Imran, M., Rauf, A., Khan, I. A., Shahbaz, M., Qaisrani, T. B., Fatmawati, S., Abu-Izneid, T., Imran, A., Rahman, K. U., & Gondal, T. A. (2018). Thymoquinone: A novel strategy to combat cancer: A review. Biomedicine & Pharmacotherapy, 106, 390–402. https://doi.org/10.1016/j.biopha.2018.06.159
  • Iyer, A. K., Duan, Z., & Amiji, M. M. (2014). Nanodelivery Systems for Nucleic Acid Therapeutics in Drug Resistant Tumors. Molecular Pharmaceutics, 11(8), 2511–2526. https://doi.org/10.1021/mp500024p
  • Iyer, A. K., Singh, A., Ganta, S., & Amiji, M. M. (2013). Role of integrated cancer nanomedicine in overcoming drug resistance. Advanced Drug Delivery Reviews, 65(13-14), 1784–1802. https://doi.org/10.1016/j.addr.2013.07.012
  • Jain, S., Doshi, A. S., Iyer, A. K., & Amiji, M. M. (2013). Multifunctional nanoparticles for targeting cancer and inflammatory diseases. Journal of Drug Targeting, 21(10), 888–903. https://doi.org/10.3109/1061186x.2013.832769
  • Jodrell, D. I., Evans, T., Steward, W. P., Cameron, D., Prendiville, J., Aschele, C., Noberasco, C., Lind, M. J., Carmichael, J. C., Dobbs, N., Camboni, G., Gatti, B., & Filippo de Braud. (2004). Phase II studies of BBR3464, a novel tri-nuclear platinum complex, in patients with gastric or gastro-oesophageal adenocarcinoma. European Journal of Cancer, 40(12), 1872–1877. https://doi.org/10.1016/j.ejca.2004.04.032
  • Johnstone, T. C. (2014). The crystal structure of oxaliplatin: A case of overlooked pseudo symmetry. Polyhedron, 67, 429–435. https://doi.org/10.1016/j.poly.2013.10.003
  • Kapp, T., Dullin, A., & Gust, R. (2010). Platinum(II)Dendrimer Conjugates: Synthesis and Investigations on Cytotoxicity, Cellular Distribution, Platinum Release, DNA, and Protein Binding. Bioconjugate Chemistry, 21(2), 328–337. https://doi.org/10.1021/bc900406m
  • Kelland, L. (2007). The resurgence of platinum- based cancer chemotherapy. Nature Reviews Cancer, 7(8), 573–584. https://doi.org/10.1038/nrc2167
  • Koo, O. M., Rubinstein, I., & Onyuksel, H. (2005). Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: Nanotechnology, Biology and Medicine, 1(3), 193–212. https://doi.org/10.1016/j.nano.2005.06.004
  • Kuang, G., Zhang, Q., He, S., Wu, Y., & Huang, Y. (2020). Reduction-responsive disulfide linkage core-cross-linked polymeric micelles for site-specific drug delivery. Polymer Chemistry, 11(44), 7078–7086. https://doi.org/10.1039/d0py00987c
  • Lata, S., Sharma, G., Joshi, M., Kanwar, P., & Mishra, T. (2017). Role of nanotechnology in drug delivery. International Journal of Nanotechnology Nanoscience, 5, 1-29. http://dx.doi.org/10.20530/IJNN363
  • Li, J., & Burgess, D. J. (2020). Nanomedicine- based drug delivery towards tumor biological and immunological microenvironment. Acta Pharmaceutica Sinica B, 10(11), 2110–2124. https://doi.org/10.1016/j.apsb.2020.05.008
  • Li, J., & Burgess, D. J. (2020b). Nanomedicine- based drug delivery towards tumor biological and immunological microenvironment. Acta Pharmaceutica Sinica B, 10(11), 2110–2124. https://doi.org/10.1016/j.apsb.2020.05.008
  • Li, J., Yap, S. M., Chin, C. T., Tian, Q., Yoong, S. L., Pastorin, G., & Ang, W. H. (2012). Platinum(iv) prodrugs entrapped within multiwalled carbon nanotubes: Selective release by chemical reduction and hydrophobicity reversal. Chemical Science, 3(6), 2083. h ttps://doi.org/10.1039/c2sc01086k
  • Li, J., Yu, F., Chen, Y., & Oupický, D. (2015). Polymeric drugs: Advances in the development of pharmacologically active polymers. Journal of Controlled Release, 219, 369–382. https://doi.org/10.1016/j.jconrel.2015.09.043
  • Li, Y., & Lin, W. (2023). Platinum-based combination nanomedicines for cancer therapy. Current Opinion in Chemical Biology, 74, 102290. https://doi.org/10.1016/j.cbpa.2023.102290
  • Lian, H., Hu, M., Liu, C., Yamauchi, Y., & Wu, K. C. (2012). Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery. Chemical Communications,48(42), 5151. g https://doi.org/10.1039/c2cc31708
  • Ma, P., Xiao, H., Li, C., Dai, Y., Cheng, Z., Hou, Z., & Lin, J. (2015). Inorganic nanocarriers for platinum drug delivery. Materials Today, 18(10), 554–564. https://doi.org/10.1016/j.mattod.2015.05.017
  • Makadia, H. K., & Siegel, S. J. (2011). Poly Lactic- co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 3(3), 1377–1397. https://doi.org/10.3390/polym3031377
  • Masood, F. (2016). Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Materials Science and Engineering: C, 60, 569–578. https://doi.org/10.1016/j.msec.2015.11.067
  • McGoron, A. J. (2020). Perspectives on the Future of Nanomedicine to Impact Patients: An Analysis of US Federal Funding and Interventional Clinical Trials. Bioconjugate Chemistry, 31(3), 436–447. https://doi.org/10.1021/acs.bioconjchem.9b00818
  • Mitchell, M. E., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021c). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 20(2), 101–124. https://doi.org/10.1038/s41573-020-0090-8
  • Nevozhay, D., Kanska, U., Budzynska, R., & BoratyÅ„ski, J. (2007). [Current status of research on conjugates and related drug delivery systems in the treatment of cancer and other diseases]. PubMed, 61, 350–360. https://pubmed.ncbi.nlm.nih.gov/17554238
  • O. Elzoghby, A., M. Abd-Elwakil, M., Abd- Elsalam, K., T. Elsayed, M., Hashem, Y., & Mohamed, O. (2016). Natural Polymeric Nanoparticles for Brain-Targeting: Implications on Drug and Gene Delivery. Current Pharmaceutical Design, 22(22), 3305–3323. https://doi.org/10.2174/1381612822666160204120829
  • Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007),Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760. https://doi.org/10.1038/nnano.2007.387
  • Pelicano, H., Martin, D. S., Xu, R., & Huang, P. (2006). Glycolysis inhibition for anticancer treatment. Oncogene, 25(34), 4633–4646. https://doi.org/10.1038/sj.onc.1209597
  • Peng, H., Zhang, Y., Wang, G., Li, M., Bratlie, K. M., Cochran, E. W., & Wang, Q. (2015). Polymeric multifunctional nanomaterials for theranostics. Journal of Materials Chemistry B, 3(34), 6856–6870. https://doi.org/10.1039/c5tb00617a
  • Rani, A., Asgher, M., Qamar, S. A., & Khalid, N. (2019). Nanostructure-mediated Delivery of Therapeutic Drugs -A Comprehensive Review. ResearchGate. https://www.researchgate.net/publication/335841976_Nanostructure-mediated_Delivery_of_Therapeutic_Drugs_-A_Comprehensive_Review
  • Sahu, T., Ratre, Y. K., Chauhan, S., Bhaskar, L. V., Nair, M., & Verma, H. K. (2021). Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. Journal of Drug Delivery Science and Technology, 63, 102487. https://doi.org/10.1016/j.jddst.2021.102487
  • Sahu, T., Ratre, Y. K., Chauhan, S., Bhaskar, L. V., Nair, M., & Verma, H. K. (2021). Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. Journal of Drug Delivery Science and Technology, 63, 102487. https://doi.org/10.1016/j.jddst.2021.102487
  • Samet, J. M., Chiu, W. A., Cogliano, V., Jinot, J., Kriebel, D., Lunn, R. M., Beland, F. A., Bero, L., Browne, P., Fritschi, L., Kanno, J., Lachenmeier, D. W., Lan, Q., Lasfargues, G., Curieux, F. L., Peters, S., Shubat, P., Sone, H., White, M. A., . . . Wild, C. P. (2020). The IARC Monographs: Updated Procedures for Modern and Transparent Evidence Synthesis in Cancer Hazard Identification.Journal of the National Cancer Institute, 112(1), 30–37. https://doi.org/10.1093/jnci/djz169
  • Sau, S., Agarwalla, P., Mukherjee, S., Bag, I., Sreedhar, B., Pal-Bhadra, M., Patra, C. R., & Banerjee, R. (2014). Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor- targeted gold nanoparticle. Nanoscale, 6(12), 6745. https://doi.org/10.1039/c4nr00974f
  • Sau, S., Alsaab, H. O., Kashaw, S. K., Tatiparti, K., & Iyer, A. K. (2017). Advances in antibody– drug conjugates: A new era of targeted cancer therapy. Drug Discovery Today, 22(10), 1547–1556. https://doi.org/10.1016/j.drudis.2017.05.011
  • Sau, S., Tatiparti, K., Alsaab, H. O., Kashaw, S. K., & Iyer, A. K. (2018). A tumor multicomponent targeting chemoimmune drug delivery system for reprograming the tumor microenvironment and personalized cancer therapy. Drug Discovery Today, 23(7), 1344–1356. https://doi.org/10.1016/j.drudis.2018.03.003
  • Shinde, S. J., Satpute, D. P., Behera, S. K., & Kumar, D. (2022). Computational Biology of BRCA2 in Male Breast Cancer, through Prediction of Probable nsSNPs, and Hit Identification. ACS Omega, 7(34), 30447– 30461. https://doi.org/10.1021/acsomega.2c03851
  • Sobhana, S., Sarathy, N. P., Karthikeyan, L., Shanthi, K., & Vivek, R. (2023). Ultra-small NIR-Responsive Nanotheranostic Agent for Targeted Photothermal Ablation Induced Damage-Associated Molecular Patterns (DAMPs) from Post-PTT of Tumor Cells Activate Immunogenic Cell Death. Nanotheranostics, 7(1), 41–60. https://doi.org/10.7150/ntno.76720
  • Su, Y., Jiang, X. Y., Zheng, L. J., Yang, Y. W., Jiang, X. Y., Tian, Y., Weiwei, T., Liu, W. F., Teng, Z. G., Yao, H., Wang, S., & Zhang, L. J. (2022). Hybrid Au-star@Prussian blue for high-performance towards bimodal imaging and photothermal treatment. Journal of Colloid and Interface Science, 634, 601–609. https://doi.org/10.1016/j.jcis.2022.12.043
  • Tran, S., DeGiovanni, P., Piel, B., & Rai, P. (2017). Cancer nanomedicine: a review of recent success in drug delivery. Clinical and Translational Medicine, 6(1). https://doi.org/10.1186/s40169-017-0175-0
  • Tsang, R. Y., Al-Fayea, T. M., & Au, H. (2009). Cisplatin Overdose. Drug Safety, 32(12), 1109–1122. https://doi.org/10.2165/11316640-000000000-00000
  • Um, I. S., Armstrong-Gordon, E., Moussa, Y. E., Gnjidic, D., & Wheate, N. J. (2019). Platinum drugs in the Australian cancer chemotherapy healthcare setting: Is it worthwhile for chemists to continue to develop platinums? Inorganica Chimica Acta, 492, 177–181. https://doi.org/10.1016/j.ica.2019.04.023
  • Verma, H. K. (2019). Exosomes facilitate chemoresistance in gastric cancer: Future challenges and openings. Precision Radiation Oncology, 3(4), 163–164. https://doi.org/10.1002/pro6.1081
  • Wang, E., & Wang, A. H. (2014). Nanoparticles and their applications in cell and molecular biology. Integrative Biology, 6(1), 9–26. https://doi.org/10.1039/c3ib40165k
  • Wang, Q., Alshaker, H., Böhler, T., Srivats, S., Chao, Y., Cooper, C., & Pchejetski, D. (2017). Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-06142-x
  • Wang, X., Wang, X., & Guo, Z. (2015). Functionalization of Platinum Complexes for Biomedical Applications. Accounts of Chemical Research, 48(9), 2622–2631 https://doi.org/10.1021/acs.accounts.5b00203
  • Wani, S. P., Kaul, D., Mavuduru, R., Kakkar, N., & Bhatia, A. (2017). Urinary-exosomal miR- 2909: A novel pathognomonic trait of prostate cancer severity. Journal of Biotechnology, 259, 135–139. https://doi.org/10.1016/j.jbiotec.2017.07.029
  • Wheate, N. J., Walker, S., Craig, G. E., & Oun, R. (2010). The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Transactions, 39(35), 8113. https://doi.org/10.1039/c0dt00292e
  • Wheate, N. J., Walker, S., Craig, G. E., & Oun, R. (2010b). The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Transactions, 39(35), 8113. https://doi.org/10.1039/c0dt00292e
  • Wu, C., Zhou, X. S., & Wei, J. (2015). Localized Surface Plasmon Resonance of Silver Nanotriangles Synthesized by a Versatile Solution Reaction. Nanoscale Research Letters, 10(1). https://doi.org/10.1186/s11671-015-1058-1
  • Wurm, F. R., & Weiss, C. K. (2014). Nanoparticles from renewable polymers. Frontiers in Chemistry, 2. https://doi.org/10.3389/fchem.2014.00049
  • Xiao, H., Yan, L., Higbee-Dempsey, E., Song, W., Qi, R., Li, W., Huang, Y., Jing, X., Zhou, D., Ding, J., & Chen, X. (2018). Recent progress in polymer-based platinum drug delivery systems. Progress in Polymer Science, 87, 70–106. https://doi.org/10.1016/j.progpolymsci.2018.07.004
  • Xiao, H., Yan, L., Higbee-Dempsey, E., Song, W., Qi, R., Li, W., Huang, Y., Jing, X., Zhou, D., Ding, J., & Chen, X. (2018b). Recent progress in polymer-based platinum drug delivery systems. Progress in Polymer Science, 87, 70–106. https://doi.org/10.1016/j.progpolymsci.2018.07.004
  • Xiao, H., Yan, L., Higbee-Dempsey, E., Song, W., Qi, R., Li, W., Huang, Y., Jing, X., Zhou, D., Ding, J., & Chen, X. (2018c). Recent progress in polymer-based platinum drug delivery systems. Progress in Polymer Science, 87, 70–106. https://doi.org/10.1016/j.progpolymsci.2018.07.004
  • Xu, Z., Wang, Z., Deng, Z., & Zhu, G. (2021). Recent advances in the synthesis, stability, and activation of platinum(IV) anticancer prodrugs. Coordination Chemistry Reviews, 442, 213991. https://doi.org/10.1016/j.ccr.2021.213991
  • Zein, R., Sharrouf, W., & Selting, K. A. (2020). Physical Properties of Nanoparticles That Result in Improved Cancer Targeting. Journal of Oncology, 2020, 1–16. https://doi.org/10.1155/2020/5194780
  • Zhang, C., Xu, C., Gao, X., & Wang, L. (2022b). Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics, 12(5), 2115–2132. https://doi.org/10.7150/thno.69424
  • Zhang, Q., Kuang, G., Zhang, L., & Zhu, Y. (2023). Nanocarriers for platinum drug delivery. 2, 77–89. https://doi.org/10.1016/j.bmt.2022.11.011
  • Zhang, Q., Kuang, G., Zhou, D., Qi, Y., Wang, M., Li, X., & Huang, Y. (2020). Photoactivated polyprodrug nanoparticles for effective light- controlled Pt(iv) and siRNA codelivery to achieve synergistic cancer therapy. Journal of Materials Chemistry B, 8(27), 5903–5911. https://doi.org/10.1039/d0tb01103g
  • Zhang, Q., Wang, X., Kuang, G., Yu, Y., & Zhao, Y. (2022). Photopolymerized 3D Printing Scaffolds with Pt(IV) Prodrug Initiator for Postsurgical Tumor Treatment. Research, 2022. https://doi.org/10.34133/2022/9784510
  • Zhang, R., Hao, L., Chen, P., Zhang, G., & Liu, N. (2023). Multifunctional small-molecule theranostic agents for tumor-specific imaging and targeted chemotherapy. Bioorganic Chemistry, 137, 106576. https://doi.org/10.1016/j.bioorg.2023.106576

Cite this article

    APA : Asif, S., & Shahid, S. (2023). Emerging Trends in Nano-Theranostics: Platinum-based Drug Delivery Systems for Cancer Treatment. Global Drug Design & Development Review, VIII(II), 15-28. https://doi.org/10.31703/gdddr.2023(VIII-II).03
    CHICAGO : Asif, Samia, and Sammia Shahid. 2023. "Emerging Trends in Nano-Theranostics: Platinum-based Drug Delivery Systems for Cancer Treatment." Global Drug Design & Development Review, VIII (II): 15-28 doi: 10.31703/gdddr.2023(VIII-II).03
    HARVARD : ASIF, S. & SHAHID, S. 2023. Emerging Trends in Nano-Theranostics: Platinum-based Drug Delivery Systems for Cancer Treatment. Global Drug Design & Development Review, VIII, 15-28.
    MHRA : Asif, Samia, and Sammia Shahid. 2023. "Emerging Trends in Nano-Theranostics: Platinum-based Drug Delivery Systems for Cancer Treatment." Global Drug Design & Development Review, VIII: 15-28
    MLA : Asif, Samia, and Sammia Shahid. "Emerging Trends in Nano-Theranostics: Platinum-based Drug Delivery Systems for Cancer Treatment." Global Drug Design & Development Review, VIII.II (2023): 15-28 Print.
    OXFORD : Asif, Samia and Shahid, Sammia (2023), "Emerging Trends in Nano-Theranostics: Platinum-based Drug Delivery Systems for Cancer Treatment", Global Drug Design & Development Review, VIII (II), 15-28
    TURABIAN : Asif, Samia, and Sammia Shahid. "Emerging Trends in Nano-Theranostics: Platinum-based Drug Delivery Systems for Cancer Treatment." Global Drug Design & Development Review VIII, no. II (2023): 15-28. https://doi.org/10.31703/gdddr.2023(VIII-II).03