ARTICLE

BIOTECHNOLOGICAL ADVANCEMENTS IN STREPTOKINASE PRODUCTION

05 Pages : 46-60

http://dx.doi.org/10.31703/gdddr.2023(VIII-IV).05      10.31703/gdddr.2023(VIII-IV).05      Published : Dec 2023

Biotechnological Advancements in Streptokinase Production

    This article offers a deep analysis of activating streptokinase which looks into the biotechnological challenges and future perspectives. One of the main problems associated with streptokinase is its short half-life, complex production process, and immunogenicity which hinders patients from getting a successful reperfusion. Yet, the development of biotechnology methods that would not face these drawbacks, such as the strategy of recombinant streptokinase production and enzyme engineering theories, is a promise. This paper aims to provide an overview of biotechnological breakthroughs in the production of streptokinase with a focus on discovering long-lasting formulations exhibiting less immunogenicity and in addition the economic viability and scalability of biotechnological production processes. This article also gives the comping image of known purification methods like chromatography, ultrafiltration, and I-A chromatography for the separation and purification of streptokinase. In addition, the author presents the advantage of such suitable production technologies as cell-free production systems and E. Coli system optimization, such as recombinant streptokinase synthesis in Yeast systems. Biotechnology is turning out to be a new area, having a future boom due to the rising innovation and demand that are associated with the prospects revealed by the market trends.

    Streptokinase, Enzyme Engineering, Recombinant Streptokinase, Streptokinase Gene Cloning
    (1) Muhammad Asim
    Graduate Scholar, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
    (2) Faiza Mushtaq
    Graduate Scholar, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
    (3) Minahil Qadeer
    Graduate Scholar, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
    (4) Sidra Sarwar
    Graduate Scholar, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
    (5) Areej Ali
    Graduate Scholar, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
    (6) Maryam Ahmad
    Graduate Scholar, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
  • Adayon, A. R., & Jamshidi, A. (2015). Esmaeili, Delivery of tissue plasminogen activator and streptokinase magnetic nanoparticles to target vascular diseases. International journal of pharmaceutics. 495(1): p. 428-438.
  • Aghaeepoor, M., Akbarzadeh, A., Kobarfard, F., Shabani, A. A, Dehnavi, E., Jamshidi, A. S., & Akbari, E. M. R. (2019). Optimization and High Level Production of Recombinant Synthetic Streptokinase in E. coli Using Response Surface Methodology. Iran J Pharm Res. Spring;18(2), 961-973. https://doi.org/10.22037/ijpr.2019.1100636
  • Aghaeepoor, M., et al., (2017). Optimization of culture media for extracellular expression of streptokinase in Escherichia coli using response surface methodology in combination with Plackett-Burman Design. Tropical Journal of Pharmaceutical Research, 16(11): p. 2567-2576.
  • Aguilera, A., et al., (2013). Formulation development of a recombinant Streptokinase suppository for hemorrhoids treatment. Biotecnologí a Aplicada, 30(3): p. 182-186.
  • Assiri, A. S, El-Gamal, B. A., Hafez, E. E., & Haidara, M.A. (2014). Production of recombinant streptokinase from Streptococcus pyogenes isolate and its potential for thrombolytic therapy. Saudi Med J. 35(12): 1482-8
  • Babashamsi, M. M. H., & Razavian, M. R. (2009). Nejadmoghaddam, Production and Purification of Streptokinase by Protected Affinity Chromatography. Avicenna Journal of Medical Biotechnology, 1(1), 47-51
  • Battershill P. E., Benfield, P., & Goa, K. L. (1994). Streptokinase. A review of its pharmacology and therapeutic efficacy in acute myocardial infarction in older patients. Drugs Aging, 4(1):63-86. https://doi.org/10.2165/00002512-199404010-00007
  • Betancourt, B. Y., et al. (2005). Pharmacovigilance program to monitor adverse reactions of recombinant streptokinase in acute myocardial infarction. BMC Clinical Pharmacology, 5: p. 1-7.
  • Deepika, G., Girish, S., & Debendra K. S. (2009). Enhanced production of recombinant streptokinase in Escherichia coli using fed- batch culture, Bioresource Technology, 100(19), 4468-4474, https://doi.org/10.1016/j.biortech.2009.04.008
  • Ehab, E. D., Hend, O., Safia S., Sami, M. N., Hadeer A. E. K., & Mohamed, A. S. (2022). Optimization of high expression and purification of recombinant streptokinase and in vitro evaluation of its thrombolytic activity, Arabian Journal of Chemistry, 15(5). https://doi.org/10.1016/j.arabjc.2022.103799.
  • Gonzalez, P. E., Omar, W., Patel, K., De Lemos, J. A., Bavry, A. A., Koshy, T., Mullasari, A., Alexander, T., Banerjee, S., & Kumbhani, D. J. (2020). Fibrinolytic strategy for ST- Segment–Elevation myocardial infarction. Circulation. Cardiovascular Interventions, 13(9). https://doi.org/10.1161/circinterventions.120.009622
  • Hagenson, M. et al. (1989). Expression of streptokinase in Pichia pastoris yeast. Enzyme and microbial technology, 11(10): p. 650-656.
  • Harvison, P. J. (2007). Streptokinase. In Elsevier eBooks (1–6). https://doi.org/10.1016/b978-008055232-3.62677-7
  • Jin, S. E., Kim, I. S., & Kim, C. K. (2015). Comparative effects of PEG-containing liposomal formulations on in vivo pharmacokinetics of streptokinase. Archives of pharmacal research, 38: p. 1822-1829.
  • Karimi, Z., et al., (2011). Fermentation, fractionation and purification of streptokinase by chemical reduction method. Iranian Journal of Microbiology, 3(1): p. 42.
  • Lee, B. R., et al., (1989). Site-specific alteration of Gly-24 in streptokinase: its effect on plasminogen activation. Biochemical and biophysical research communications, 165(3): p. 1085-1090.
  • Locke, M., et al., (2020). An international collaborative study to establish the WHO 4th International Standard for Streptokinase: Communication from the SSC of the ISTH. Journal of Thrombosis and Haemostasis, 18(6): 1501-1505.
  • Longstaff, C., Thelwell, C., & Whitton. (2005). The poor quality of streptokinase products in use in developing countries, Journal of Thrombosis and Haemostasis, 3(5), 1092- 1093, https://doi.org/10.1111/j.1538-7836.2005.01271.x
  • Malke, H., & Ferretti, J. J. (1984). Streptokinase: cloning, expression, and excretion by Escherichia coli. Proceedings of the National Academy of Sciences, 81(11): p. 3557-3561
  • Modaresi, S. M. S., et al., (2014). Preparation and characterization of self-assembled chitosan nanoparticles for the sustained delivery of streptokinase: an in vivo study. Pharmaceutical development and technology, 19(5): p. 593-597
  • Monk, J. P., & Heel, R. C. (1987). Anisoylated Plasminogen Streptokinase Activator Complex (APSAC). Drugs 34, 25–49. https://doi.org/10.2165/00003495-198734010-00002
  • Perkins, W., et al., (1997). Streptokinase entrapment in interdigitation-fusion liposomes improves thrombolysis in an experimental rabbit model. Thrombosis and haemostasis, 77(06): 1174-1178.
  • Pimienta, E., Ayala, J.C., Rodríguez, C. et al. (2007). Recombinant production of Streptococcus equisimilis streptokinase by Streptomyces lividans. Microb Cell Fact 6, 20. https://doi.org/10.1186/1475-2859-6-20
  • Pimienta, E., et al. (2007). Recombinant production of Streptococcus equisimilis streptokinase by Streptomyces lividans. Microbial Cell Factories, 6: p. 1-8.
  • Pitek, A. S., et al., (2017). Elongated plant virus- based nanoparticles for enhanced delivery of thrombolytic therapies. Molecular pharmaceutics, 14(11): p. 3815-3823.
  • Pitek, A. S., et al., (2018). Delivery of thrombolytic therapy using rod-shaped plant viral nanoparticles decreases the risk of hemorrhage. Nanoscale, 10(35): p. 16547- 16555.
  • Sobel, B. E. (1987). Safety and Efficacy of Tissue- Type Plasminogen Activator Produced by Recombinant DNA Technology. SAFETY, 40: p. 4B.
  • Sohaimy, S., et al., (2011). Expression of recombinant Streptokinase from local Egyptian Streptococcus sp. SalMarEg. African Journal of Biotechnology, 10(45): p. 9001-9011.
  • Vaidya, B., et al., (2016). Development and characterization of highly selective target- sensitive liposomes for the delivery of streptokinase: in vitro/in vivo studies. Drug delivery, 23(3): p. 791-797.
  • Vellanki, R. N. et al. (2013). Constitutive optimized production of streptokinase in Saccharomyces cerevisiae utilizing glyceraldehyde 3-phosphate dehydrogenase promoter of Pichia pastoris. BioMed Research International
  • Wu, X., Ye, R., Duan, Y., & Wong, S. L. (1998). Engineering of plasmin-resistant forms of streptokinase and their production in Bacillus subtilis: streptokinase with longer functional half-life. Appl Environ Microbiol. 64(3):824-9. https://doi.org/10.1128/AEM.64.3.824-829.1998
  • Yaghoobi, N., et al., (2017). Preparation, optimization and activity evaluation of PLGA/streptokinase nanoparticles using electrospray. Advanced Pharmaceutical Bulletin, 7(1): p. 131.
  • Yousaf, S., Arshad, M., Harraz, F. A., Masood, R., Zia, M. A., Jalalah, M., & Faisal, M. (2024). Evaluation of clinical efficacy of streptokinase by comparison with the thrombolytic agent on animal model. Braz J Biol. 26, 84:e271083. https://doi.org/10.1590/1519-6984.271083
  • Zhang, X., et al. (1999). Recombinant streptokinase production by fed-batch cultivation of Escherichia coli. Enzyme and Microbial Technology, 24(10): p. 647-650
  • Rafipour, M., Keramati, M., Aslani, M. M., Arashkia, A., & Roohvand, F. (2019). The β- domain of streptokinase affects several functionalities, including specific/proteolytic activity kinetics. FEBS Open Bio. 9(7):1259- 1269. https://doi.org/10.1002/2211-5463.12657
  • Kunamneni, A., Abdelghani, T. T. A., & Ellaiah, P. (2006). Streptokinase—the drug of choice for thrombolytic therapy. Journal of Thrombosis and Thrombolysis, 23(1), 9–23. https://doi.org/10.1007/s11239-006-9011-x
  • Akbar, G., Zia, M. A., Ahmad, A., Arooj, N., & Nusrat, S. (2020). Review on Streptokinase with its Antigenic Determinants and Perspectives to Develop its Recombinant Enzyme with Minimum Immunogenicity. Journal of Innovative Sciences, 6(1). https://doi.org/10.17582/journal.jis/2020/6.1.17.23
  • Aghaeepoor, M., Akbarzadeh, A., Kobarfard, F., Shabani, A. A., Dehnavi, E., Aval, S. J., & Eidgahi, M. R. A. (2019). Optimization and High Level Production of Recombinant Synthetic Streptokinase in E. coli Using Response Surface Methodology. PubMed, 18(2), 961–973. https://doi.org/10.22037/ijpr.2019.1100636
  • Ark, A., H., Latky, Obert, M., C., Aliff, C., D., Avid, Aylor, Erry, L., L., Ee, Aul, W., A., Rmstrong, Abriel, Arbash, Harvey, Hite, Aarten, L., S., Imoons, Charlotte, L., N., Elson, Ancy, Lapp, Hanning, J., D., Night, Rank, E., H., Arrell, Ohn, Imes, Ric, J., T., & Opol. (1995). Cost effectiveness of thrombolytic therapy with tissue plasminogen activator as compared with streptokinase for acute myocardial infarction. The New England journal of medicine, 332 21, 1418-24.
  • Bhardwaj S., & Angayarkanni J. (2015). Streptokinase production from Streptococcus dysgalactiae subsp. equisimilis SK-6 in the presence of surfactants, growth factors and trace elements. 3 Biotech. 5(2):187-193. . https://doi.org/10.1007/s13205-014-0209-x
  • Aghaeepoor, M., Akbarzadeh, A., Kobarfard, F., Shabani, A. A., Dehnavi, E., Aval, S. J., & Eidgahi, M. R. A. (2019b). Optimization and High Level Production of Recombinant Synthetic Streptokinase in E. coli Using Response Surface Methodology. PubMed, 18(2), 961–973. https://doi.org/10.22037/ijpr.2019.1100636
  • Tran, K., Gurramkonda, C., Cooper, M. A., Pilli, M., Taris, J. E., Selock, N., Han, T. C., Tolosa , M., Zuber, A., Peñalber-Johnstone, C., Dinkins, C., Pezeshk, N., Kostov, Y., Frey, D. D., Tolosa, L., Wood, D. W., & Rao, G. (2018). Cell-free production of a therapeutic protein: Expression, purification, and characterization of recombinant streptokinase using a CHO lysate. Biotechnol Bioeng. 115(1):92-102. https://doi.org/10.1002/bit.26439
  • Assiri, A. S., El-Gamal, B. A., Hafez, E. E., & Haidara, M. A. (2014). Production of recombinant streptokinase from Streptococcus pyogenes isolate and its potential for thrombolytic therapy. Saudi Med J. 35(12), 1482-8.
  • Dataintelo, S. R., & Dataintelo. (2023, September 2). Streptokinase Market Report | Global Forecast from 2023 to 2032. Dataintelo. https://dataintelo.com/report/global-streptokinase-market/
  • Renzo, P. K., Siiteri, B. L., & Hutchings, P. H. (1967). Bell, Preparation and Certain Properties of Highly Purified Streptokinase, Journal of Biological Chemistry, 242(3), 533- 542, https://doi.org/10.1016/S0021-9258(18)96306-4
  • Ghosh, S., Saha, S., & Sahoo, S. (2021). Production of Thrombolytic and Fibrinolytic Proteases: Current Advances and Future Prospective. In: Thatoi, H., Mohapatra, S., Das, S.K. (eds) Bioprospecting of Enzymes in Industry, Healthcare and Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-33-4195-1_17

Cite this article

    CHICAGO : Asim, Muhammad, Faiza Mushtaq, and Minahil Qadeer. 2023. "Biotechnological Advancements in Streptokinase Production." Global Drug Design & Development Review, VIII (IV): 46-60 doi: 10.31703/gdddr.2023(VIII-IV).05
    HARVARD : ASIM, M., MUSHTAQ, F. & QADEER, M. 2023. Biotechnological Advancements in Streptokinase Production. Global Drug Design & Development Review, VIII, 46-60.
    MHRA : Asim, Muhammad, Faiza Mushtaq, and Minahil Qadeer. 2023. "Biotechnological Advancements in Streptokinase Production." Global Drug Design & Development Review, VIII: 46-60
    MLA : Asim, Muhammad, Faiza Mushtaq, and Minahil Qadeer. "Biotechnological Advancements in Streptokinase Production." Global Drug Design & Development Review, VIII.IV (2023): 46-60 Print.
    OXFORD : Asim, Muhammad, Mushtaq, Faiza, and Qadeer, Minahil (2023), "Biotechnological Advancements in Streptokinase Production", Global Drug Design & Development Review, VIII (IV), 46-60
    TURABIAN : Asim, Muhammad, Faiza Mushtaq, and Minahil Qadeer. "Biotechnological Advancements in Streptokinase Production." Global Drug Design & Development Review VIII, no. IV (2023): 46-60. https://doi.org/10.31703/gdddr.2023(VIII-IV).05