A REVIEW OF NOVEL TECHNIQUES FOR NANOPARTICLES PREPARATION

http://dx.doi.org/10.31703/gdddr.2019(IV-I).05      10.31703/gdddr.2019(IV-I).05      Published : Dec 2019
Authored by : Irsah Maqbool , Sobia Noreen

05 Pages : 41-50

References

  • Agashe, H., Sahoo, K., Lagisetty, P., & Awasthi, V. (2011). Cyclodextrin-mediated entrapment of curcuminoid 4-[3, 5-bis (2-chlorobenzylidene- 4-oxo-piperidine-1-yl)-4-oxo-2-butenoic acid] or CLEFMA in liposomes for treatment of xenograft lung tumor in rats. Colloids and Surfaces B: Biointerfaces, 84(2), 329-337.
  • Allen, T. M. (2002). Ligand-targeted therapeutics in anticancer therapy. Nature Reviews Cancer, 2(10), 750.
  • Anselmo, A. C., & Mitragotri, S. (2014). Cell- mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles. Journal of controlled release, 190, 531-541.
  • Attama, A., Reichl, S., & Müller-Goymann, C. (2009). Sustained release and permeation of timolol from surface-modified solid lipid nanoparticles through bioengineered human cornea. Current eye research, 34(8), 698-705.
  • Bhagwat, R., & Vaidhya, I. (2013). Novel drug delivery systems: An overview. International Journal of Pharmaceutical Sciences and Research, 4(3), 970.
  • Booysen, L., Kalombo, L., Brooks, E., Hansen, R., Gilliland, J., Gruppo, V., . . . Kotze, A. (2013). In vivo/in vitro pharmacokinetic and pharmacodynamic study of spray-dried poly- (dl-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid. International journal of pharmaceutics, 444(1- 2), 10-17.
  • Dalpiaz, A., Vighi, E., Pavan, B., & Leo, E. (2009). Fabrication via a nonaqueous nanoprecipitation method, characterization and in vitro biological behavior of N6-cyclopentyladenosine-loaded nanoparticles. Journal of pharmaceutical sciences, 98(11), 4272-4284.
  • Danhier, F., Ansorena, E., Silva, J. M., Coco, R., Le Breton, A., & Préat, V. (2012). PLGA-based nanoparticles: an overview of biomedical applications. Journal of controlled release, 161(2), 505-522.
  • Douglas, K. L., & Tabrizian, M. (2005). Effect of experimental parameters on the formation of alginate-chitosan nanoparticles and evaluation of their potential application as DNA carrier. Journal of Biomaterials Science, Polymer Edition, 16(1), 43-56.
  • El-Nour, K. M. A., Eftaiha, A. a., Al-Warthan, A., & Ammar, R. A. (2010). Synthesis and applications of silver nanoparticles. Arabian journal of chemistry, 3(3), 135-140.
  • Emeje, M. O., Obidike, I. C., Akpabio, E. I., & Ofoefule, S. I. (2012). Nanotechnology in drug delivery. Recent advances in novel drug carrier systems, 69-106.
  • Galindo-Rodriguez, S., Allemann, E., Fessi, H., & Doelker, E. (2004). Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification- diffusion, and nanoprecipitation methods. Pharmaceutical research, 21(8), 1428-1439.
  • Ganachaud, F., & Katz, J. L. (2005). Nanoparticles and nanocapsules created using the Ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices. ChemPhysChem, 6(2), 209-216.
  • Gao, Y., Chen, L., Zhang, Z., Chen, Y., & Li, Y. (2011). Reversal of multidrug resistance by reduction-sensitive linear cationic click polymer/iMDR1-pDNA complex nanoparticles. Biomaterials, 32(6), 1738-1747.
  • Geçer, A., Yıldız, N., Çalımlı, A., & Turan, B. (2010). Trimethyl chitosan nanoparticles enhances dissolution of the poorly water soluble drug Candesartan-Cilexetil. Macromolecular research, 18(10), 986-991.
  • Greish, K. (2010). Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting Cancer Nanotechnology (pp. 25-37): Springer
  • Hans, M. L., & Lowman, A. M. (2002). Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Science, 6(4), 319-327.
  • In, G. K., & Nieva, J. (2015). Emerging chemotherapy agents in lung cancer: nanoparticles therapeutics for non-small cell lung cancer. Translational Cancer Research, 4(4), 340-355.
  • Iskandar, F., Gradon, L., & Okuyama, K. (2003). Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. Journal of Colloid and Interface Science, 265(2), 296-303.
  • Jain, S., Mittal, A., & K Jain, A. (2011). Enhanced topical delivery of cyclosporin-A using PLGA nanoparticles as carrier. Current nanoscience, 7(4), 524-530.
  • Jain, S., Mittal, A., K Jain, A., R Mahajan, R., & Singh, D. (2010). Cyclosporin A loaded PLGA nanoparticle: preparation, optimization, in-vitro characterization and stability studies. Current Nanoscience, 6(4), 422-431.
  • Khan, I., Saeed, K., & Khan, I. (2017). Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry.
  • Kim, B., Hwang, S., Park, J., & Park, H. J. (2002). Preparation and characterization of drug- loaded polymethacrylate microspheres by an emulsion solvent evaporation method. Journal of microencapsulation, 19(6), 811-822.
  • Kostag, M., Köhler, S., Liebert, T., & Heinze, T. (2010). Pure cellulose nanoparticles from trimethylsilyl cellulose. Paper presented at the Macromolecular symposia.
  • Kozek, K. A., Kozek, K. M., Wu, W.-C., Mishra, S. R., & Tracy, J. B. (2013). Large-scale synthesis of gold nanorods through continuous secondary growth. Chemistry of Materials, 25(22), 4537- 4544.
  • Kreyling, W. G., Semmler, M., & Möller, W. (2004). Dosimetry and toxicology of ultrafine particles. Journal of Aerosol Medicine, 17(2), 140-152.
  • Kumar, P., Sulochana, P., Nirmala, G., Haridattatreya, M., & Satchidanandam, V. (2004). Conserved amino acids 193-324 of non-structural protein 3 are a dominant source of peptide determinants for CD4 and CD8 T cells in a healthy Japanese encephalitis virus- endemic cohort. Journal of General Virology, 85(5), 1131-1143.
  • Lamprecht, B., Schider, G., Lechner, R., Ditlbacher, H., Krenn, J. R., Leitner, A., & Aussenegg, F. R. (2000). Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Physical review letters, 84(20), 4721.
  • Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews, 108(6), 2064-2110.
  • Liu, P. (2013). Modification strategies for carbon nanotubes as a drug delivery system. Industrial & Engineering Chemistry Research, 52(38), 13517-13527.
  • Liu, Z., Wu, Y., Guo, Z., Liu, Y., Shen, Y., Zhou, P., & Lu, X. (2014). Effects of internalized gold nanoparticles with respect to cytotoxicity and invasion activity in lung cancer cells. PLoS One, 9(6), e99175.
  • Lu, Z., Bei, J., & Wang, S. (1999). A method for the preparation of polymeric nanocapsules without stabilizer. Journal of Controlled Release, 61(1-2), 107-112.
  • Marelli, U. K., Rechenmacher, F., Sobahi, T. R. A., Mas-Moruno, C., & Kessler, H. (2013). Tumor targeting via integrin ligands. Frontiers in oncology, 3, 222.
  • Mishra, B., Patel, B. B., & Tiwari, S. (2010). Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: Nanotechnology, biology and medicine, 6(1), 9- 24.
  • Mohanraj, V., & Chen, Y. (2006). Nanoparticles-a review. Tropical journal of pharmaceutical research, 5(1), 561-573.
  • Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.
  • Mu, L., & Feng, S. (2003). A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. Journal of controlled release, 86(1), 33-48.
  • Muhamad12, I. I., Selvakumaran, S., & Lazim, N. A. M. (2014). Designing polymeric nanoparticles for targeted drug delivery system. Nanomed, 287, 287.
  • Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. science, 311(5761), 622-627.
  • Nicoli, S., Santi, P., Couvreur, P., Couarraze, G., Colombo, P., & Fattal, E. (2001). Design of triptorelin loaded nanospheres for transdermal iontophoretic administration. International journal of pharmaceutics, 214(1-2), 31-35.
  • Ochekpe, N. A., Olorunfemi, P. O., & Ngwuluka, N. C. (2009). Nanotechnology and drug delivery part 2: nanostructures for drug delivery. Tropical journal of pharmaceutical research, 8(3).
  • Ouyang, Y., Shi, H., Fu, R., & Wu, D. (2013). Highly monodisperse microporous polymeric and carbonaceous nanospheres with multifunctional properties. Scientific reports, 3, 1430.
  • Pandey, N., Dhiman, S., Srivastava, T., & Majumder, S. (2016). Transition metal oxide nanoparticles are effective in inhibiting lung cancer cell survival in the hypoxic tumor microenvironment. Chemico-biological interactions, 254, 221-230.
  • Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A., Seaton, A., . . . Donaldson, K. (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature nanotechnology, 3(7), 423.
  • Rangari, A. T., & Ravikumar, P. (2015). Polymeric nanoparticles based topical drug delivery: an overview. Asian Journal of Biomedical and Pharmaceutical Sciences, 5(47), 5.
  • Rodrigues, S., da Costa, A. M. R., & Grenha, A. (2012). Chitosan/carrageenan nanoparticles: Effect of cross-linking with tripolyphosphate and charge ratios. Carbohydrate polymers, 89(1), 282-289.
  • Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., & Rudzinski, W. E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of controlled release, 70(1-2), 1-20.
  • Stevanovic, M., & Uskokovic, D. (2009). Poly (lactide-co-glycolide)-based micro and nanoparticles for the controlled drug delivery of vitamins. Current nanoscience, 5(1), 1-14.
  • Venkatesh, D. N., Baskaran, M., Karri, V. V. S. R., Mannemala, S. S., Radhakrishna, K., & Goti, S. (2015). Fabrication and in vivo evaluation of Nelfinavir loaded PLGA nanoparticles for enhancing oral bioavailability and therapeutic effect. Saudi Pharmaceutical Journal, 23(6), 667-674.
  • Wang, Y., Wei, X., Zhang, C., Zhang, F., & Liang, W. (2010). Nanoparticle delivery strategies to target doxorubicin to tumor cells and reduce side effects. Therapeutic delivery, 1(2), 273- 287.
  • Xu, Y., Roy, R., Cassaro, G., & Ramsden, J. (2009). Development of a cost estimating framework for nanotechnology based products Global Perspective for Competitive Enterprise, Economy and Ecology (pp. 193-201): Springer.
  • Yang, W.-W., & Pierstorff, E. (2012). Reservoir- based polymer drug delivery systems. Journal of laboratory automation, 17(1), 50-58.

Cite this article

    CHICAGO : Maqbool, Irsah, and Sobia Noreen. 2019. "A Review of Novel Techniques for Nanoparticles Preparation." Global Drug Design & Development Review, IV (I): 41-50 doi: 10.31703/gdddr.2019(IV-I).05
    HARVARD : MAQBOOL, I. & NOREEN, S. 2019. A Review of Novel Techniques for Nanoparticles Preparation. Global Drug Design & Development Review, IV, 41-50.
    MHRA : Maqbool, Irsah, and Sobia Noreen. 2019. "A Review of Novel Techniques for Nanoparticles Preparation." Global Drug Design & Development Review, IV: 41-50
    MLA : Maqbool, Irsah, and Sobia Noreen. "A Review of Novel Techniques for Nanoparticles Preparation." Global Drug Design & Development Review, IV.I (2019): 41-50 Print.
    OXFORD : Maqbool, Irsah and Noreen, Sobia (2019), "A Review of Novel Techniques for Nanoparticles Preparation", Global Drug Design & Development Review, IV (I), 41-50