Strategies and Techniques of Drug Discovery from Natural Products
New drugs are mostly obtained from Natural sources. The traditional and ethic medicines have provided evidence on the therapeutic properties and resulted in some distinguished drug discovery of natural products. The microorganisms and the endogenous active materials from human or animal have also become a significant approach to the discovery of a drug. Bioinformatics and artificial intelligence have facilitated the study and development of products. For discovery of natural products different software have been used. Different computational software needed in the future for the predicting features in new drug development, for instance pharmacokinetic and pharmacodynamics, in drug development lead positive impact. This review focus on natural product drug discovery and uses innovative strategies and techniques as a part of discovery of drugs from natural products.
-
Essential Products, Drug Development and Design, Discovery, Strategies, Omics.
-
(1) Parniya Akbar Ali
Undergraduate Students, Department of Pharmacy, Quaid I Azam University, Islamabad, Pakistan.
(2) Farah Hanif
Undergraduate Students, Department of Pharmacy, Quaid I Azam University, Islamabad, Pakistan.
(3) Hosna Nettour
Undergraduate Students, Department of Pharmacy, Quaid I Azam University, Islamabad, Pakistan.
(4) Mubashar Rehman
Assistant Professor, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
- Akbulut, Y., Gaunt, H., Muraki, K., Ludlow, M., Amer, M., Bruns, A., et al. (2015). (-)-Englerin A is a potent and selective activator of TRPC4 and TRPC5 calcium channels. pp. 3787-3791.
- Bandow, J. H. (2003). Proteomic approach to understanding antibiotic action. . pp. 948-955.
- Baselga, J. C.-1. (2012). Baselga, J., Cortés, J., Kim, S. B., Im, S. A., Hegg, R., Im, Y. H., ... & Clark, E. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. New England Journal of Medicine, 366(2), 109-119. pp. 109-119.
- Benkeblia, N. (2004). Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). pp. 263-268
- Benzaquen, M. G. (2015). Benzaquen, M., Galvão, K. N., Coleman, A. E., Santos, J. E. P., Goff, J. P., & Risco, C. A. Effect of oral mineral and energy supplementation on blood mineral concentrations, energetic and inflammatory profile, and milk yield in dairy cows affecte. pp. 186-191.
- Boehm, M. V.-3. (2011). Boehm, M. Virtual Screening of Chemical Space: From Generic Compound Collections to Tailored Screening Libraries. Virtual Screening. Principles, Challenges, and Practical Guidelines, 1, 3-33. pp. 3-33.
- Bolzani, V. d. (2012). Natural products from Brazilian biodiversity as a source of new models for medicinal chemistry. . pp. 1837-1846.
- Bumpus S.B., E. B. (2009). A proteomics approach to discovery of natural products and their biosynthetic pathways. Nat. Biotechnol. pp. 951-956.
- Buriani A., G.-B. M.-C. (2012). Omic techniques in systems biology approaches to traditional Chinese medicine research . pp. 535-544.
- C. K. Ong, G. B. (2005). WHO Global Atlas of Traditional, Complementary and Alternative Medicine. pp. 165- 169.
- cancer., P. p. (2012). Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. pp. 109-119.
- Century., A. r.-c. (2013). pp. 795-802.
- Chang J., K. Y. (2016). Advances in identification and validation of protein targets of natural products without chemical modification. Nat. Prod. Rep. pp. 719-730.
- Chapman, T. L.-6. (2003). Chapman, T. Lab automation and robotics: Automation on the move. Nature, 421(6923), 661-663. pp. 661-663.
- chemistry., C. w. (2014). Coping with polypharmacology by computational medicinal chemistry. pp. 648-653.
- Chen X., X. L. (2017). Identification of crude drugs in the Japanese pharmacopoeia using a DNA barcoding system. Sci. Rep.
- Chin, P. B.-8. (2009). Chin, P., Barney, W. S., & Pindzola, B. A. Microstructured reactors as tools for the intensification of pharmaceutical reactions and processes. Current opinion in drug discovery & development, 12(6), 848-861.. . pp. 848-861.
- Congreve, M. C.-b.-8. (2003). Congreve, M., Carr, R., Murray, C., & Jhoti, H. A'rule of three'for fragment-based lead discovery?. Drug discovery today, 19(8), 876-877. pp. 876-877.
- Debouck, C. ..-1. (2009). Debouck, C. . Integrating genomics across drug discovery and development. Toxicology letters, 186(1), 9-12. pp. 9-12.
- design., C. o. (2016). Counting on natural products for drug design. pp. 531-541.
- Development., D. B.-S. (2017). David Bowie and the Art of Slow Innovation: A Fast-Second Winner Strategy for Biotechnology and Precision Medicine Global Development. pp. 633-637.
- development., I. g. (2009). Integrating genomics across drug discovery and development. pp. 9-12.
- discovery., A. '.-b. (2003). A 'rule of three' for fragment-based lead discovery. pp. 876-877.
- Duraipandiyan, V. M. (2006). Antimicrobial activity of some ethnomedicinal plants used by Palyar tribe from Tamil Nadu, India. pp. 35-41.
- Eglen, R. M.-d.-t.-2. (2015). Eglen, R. M., & Randle, D. H. . Drug discovery goes three-dimensional: goodbye to flat high-throughput screening?. Assay and drug development technologies, 13(5), 262-265. pp. 262-265.
- Elumalai, N. B.-4. (2015). Elumalai, N., Berg, A., Natarajan, K., Scharow, A., & Berg, T. Nanomolar inhibitors of the transcription factor STAT5b with high selectivity over STAT5a. Angewandte Chemie, 127(16), 4840-4845. pp. 4840-4845.
- field., A. a.-e. (2015). pp. 2695-2703.
- Fishilevich S., N. R. (2017). Genehancer: Genome-wide integration of enhancers and target genes in genecards. Database. .
- Ganie S.H., U. P. (2015). Authentication of medicinal plants by DNA markers. Plant Gene. . pp. 83-99.
- Ganie S.H., U. P., & 4:83'99. (2015). Authentication of medicinal plants by DNA markers. . pp. 83-99.
- Gupta. R., B. G. (2005). Nature's Medicines: Traditional Knowledge and Intellectual Property Management. pp. 203-219.
- Gurib-Fakim, A. (2005). Medicinal plants: Traditions of yesterday and drugs of tomorrow. . pp. 1-93.
- Hunter., n. e. (2009). nteractive exploration of chemical space with Scaffold Hunter. pp. 581-583.
- Incidence of central nervous system metastases in patients with HER2-positive metastatic breast cancer treated with pertuzumab, t. a. (2014). ab, trastuzumab, and docetaxel: results from the randomized phase III study CLEOPATRA. pp. 1116-1121.
- Iwu, M. W. (1999). New antimicrobials of plant origin. pp. 457-462.
- Jigna, P. a. (2007). In vitro antimicrobial activity and phytochemical analysis of some Indian Medicinal plants. . pp. 53-58.
- Jones M.J., G. S. (2015). DNA methylation and healthy human aging. Aging Cell. pp. 924-932.
- Kelly T.K., L. Y. (2012). Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res. pp. 2497-2506.
- Khalid, H. W. (2012). Gems from traditional north-African medicine: medicinal and aromatic plants from Sudan. . pp. 92-103.
- Kong, J. M. (2003). Recent advances in traditional plants drugs and orchids. pp. 7-21.
- L., S. (1973). Genetic manipulation: Now is the time to consider controls. Sci. Forum. . pp. 7-11.
- Lagunin, A. S.-7. (2000). Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. PASS: prediction of activity spectra for biologically active substances. Bioinformatics, 16(8), 747-748. pp. 747-748.
- Leads., I. V.-b.-b. (2015). Incorporating Virtual Reactions into a Logic-based Ligand-based Virtual Screening Method to Discover New Leads. pp. 615-625.
- learning., D. (2015). Deep learning. pp. 436-444.
- Lee H., L. J. (2016). Target identification for biologically active small molecules using chemical biology approaches. Arch. Pharm. Res. pp. 1193-1201.
- Lee K.-H., L. H.-L.-C.-Y.-M. (2014). A gene expression signature-based approach reveals the mechanisms of action of the Chinese herbal medicine Berberine. Sci. Rep.
- Lewington, A. (1993). A review of the importation of medicinal plants and plant extracts into Europe. .
- Libraries., I. P.-P.-T. (2017). pp. 461-465.
- ligands., C. o.-c. (2014). Combining on-chip synthesis of a focused combinatorial library with computational target prediction reveals imidazopyridine GPCR ligands.
- Lv C., W. X. (2017). The gene expression profiles in response to 102 traditional Chinese medicine (TCM) components: A general template for research on TCMs. Sci. Rep.
- MacConnell, A. B.-e.-1. (2017). MacConnell, A. B., Price, A. K., & Paegel, B. M. . An integrated microfluidic processor for DNA-encoded combinatorial library functional screening. ACS combinatorial science, 19(3), 181-192. pp. 181-192.
- MartÃÂnez-Esteso M.J., M.-M. A.-M.-C.-M. (2015). The role of proteomics in progressing insights into plant secondary metabolism. Front. Plant Sci.
- Medema, M., & Fischbach, M. (2015). Computational approaches to natural product discovery. pp. 639-648.
- metabolites., P. m. (2013). pp. 1119-1123.
- Nature., C. T., & 10.1038/421661a, 4.-6. d. (2003). Chapman T. Lab automation and robotics: Automation on the move. Nature. ;421:661-666. doi: 10.1038/421661a . pp. 661-666.
- Nature., p. C., & 421:661-666. (2003). T. Lab automation and robotics: Automation on the move. Nature. ;421:661-666 . pp. 661-666.
- Nicholson J.K., L. J. (2008). Systems biology: Metabonomics. Nature.
- Novick D., R. M. (2012). Ligand affinity chromatography, an indispensable method for the purification of soluble cytokine receptors and binding proteins. Methods Mol. Biol. pp. 195-21
- Ousterout D.G., G. C. (2012). Advances in targeted genome editing. Curr. Opin. Chem. Biol. pp. 268-277.
- Özdemir, V. &.-s.-6. (2017). Özdemir, V., & Patrinos, G. P. David bowie and the art of slow innovation: A fast- second winner strategy for biotechnology and precision medicine global development. OMICS: A Journal of Integrative Biology, 21(11), 633-637. pp. 633-637.
- Pertuzumab, t. a.-p.-b.-c. (2013). Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo- controlled, phase 3 study. pp. 461-471.
- Pfaunmiller E.L., P. M. (2013). Affinity monolith chromatography: A review of principles and recent analytical applications. Anal. Bioanal. Chem. pp. 2133-2145.
- Philipeon, J. D. (2001). Phytochemistry and medicinal plants. . pp. 237-243.
- processes., M. r. (2009). Microstructured reactors as tools for the intensification of pharmaceutical reactions and processes. pp. 848-861.
- Pulice G., P. S.-H. (2016). Molecular farming in Artemisia annua, a promising approach to improve anti-malarial drug production. Front. Plant Sci.
- Quinn, R. J.-l.-4. (2008). Quinn, R. J., Carroll, A. R., Pham, N. B., Baron, P., Palframan, M. E., Suraweera, L., ... & Muresan, S. . Developing a drug-like natural product library. Journal of Natural Products, 71(3), 464-468. pp. 464-468.
- R.J. Quinn, e. a. (2008). R.J. Quinn, et al.Developing a drug like natural product library. pp. 464-468.
- Reutlinger, M. R.-C. (2014). Reutlinger, M., Rodrigues, T., Schneider, P., & Schneider, G. Combining On-Chip Synthesis of a Focused Combinatorial Library with Computational Target Prediction Reveals Imidazopyridine GPCR Ligands. Angewandte Chemie International Edition, 53(2),. pp. 582-585.
- Rix U., S.-F. G. (2009). Target profiling of small molecules by chemical proteomics. Nat. Chem. Biol. . pp. 616-624.
- Rodrigues, T. (2017). Harnessing the potential of natural products in drug discovery from a cheminformatics vantage point.
- Rodrigues, T. R. (2016). Rodrigues, T., Reker, D., Schneider, P., & Schneider, G. (. Counting on natural products for drug design. Nature chemistry, 8(6), 531.
- Rojas, R. B. (2003 ). Antimicrobial activity of selected Peruvian medicinal plants. pp. 199-204.
- S.Wu, e. a.-c.-c.-t. (2007). S.Wu,et al multi-channel counter-current chromatography for high-throughput fraction of natural products for drug discovery. pp. 99-107.
- Sandhya, B. S. (2006). Ethnomedicinal plants used by the Valaiyan community of Piranmalai Hills (Reserved Forest), Tamil Nadu, India. . pp. 101-114.
- Schirle M., B. M. (2012). Mass spectrometry-based proteomics in preclinical drug discovery. Chem. Biol. pp. 72-84.
- Screening., a. D.-D.-T. (2015). Discovery Goes Three-Dimensional: Goodbye to Flat High-Throughput Screening.
- Screening., A. I.-E. (2017). An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening. pp. 181-192
- Singh, S. B.-f.-1. (2006). Singh, S. B., & Barrett, J. F. Empirical antibacterial drug discovery'foundation in natural products. Biochemical pharmacology, 71(7), 1006-1015. ,. pp. 1006-1015.
- Sparkes A., A. W., & 2:1. (2010).
- Stalder, R. &.-1. (2013). Stalder, R., & Roth, G. P. Preparative microfluidic electrosynthesis of drug metabolites. ACS medicinal chemistry letters, 4(11), 1119-1123. pp. 1119-1123
- STAT5a., N. i. (2015). Nanomolar inhibitors of the transcription factor STAT5b with high selectivity over STAT5a. pp. 4758-4763.
- substances., P. p. (2000). PASS: prediction of activity spectra for biologically active substances. pp. 747-748.
- Swain, S. M.-p.-b. (2013). Swain, S. M., Kim, S. B., Cortés, J., Ro, J., Semiglazov, V., Campone, M., ... & Clark, E. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blin. pp. 461-471.
- techniques S.B. Singh, J. B.-f. (2006). techniques S.B. Singh, J.F. Barrett Emperical antibacterial drug discovery- foundation in natural products. pp. 1006-1015
- the species Ganie S.H., U. P., & 4:83'99. (2015). Authentication of medicinal plants by DNA markers. pp. 83- 99.
- University., T. t.-o.-o. (2002). Teaching target-oriented and diversity-oriented organic synthesis at Harvard University. pp. 535-541.
- Verma, S. a. (2008). Current and future status of herbal medicines. . pp. 347-350.
- Westh, H. C. (2004). An international multicenter study of antimicrobial consumption and resistance in Staphylococcus aureus isolates from 15 hospitals in 14 countries. . pp. 169-176.
- Wu, S. Y.-c.-c.-t.-2.-1. (2008). Wu, S., Yang, L., Gao, Y., Liu, X., & Liu, F. . Multi-channel counter-current chromatography for high-throughput fractionation of natural products for drug discovery. Journal of chromatography A, 1180(1-2), 99-107. pp. 99-107.
- Xie G., P. R. (2008). Ultra-performance LC/TOF MS analysis of medicinal Panax herbs for metabolomic research. J. Sep. Sci. pp. 1015-1026.
- Yan T., F. Q. (2015). UPLC-MS/MS determination of ephedrine, methylephedrine, amygdalin and glycyrrhizic acid in beagle plasma and its application to a pharmacokinetic study after oral administration of Ma Huang Tang. Drug. Test. Anal. pp. 158-163.
- Yang T.Y., H. L. (2014). Comparison of genome-wide DNA methylation in urothelial carcinomas of patients with and without arsenic exposure. Environ. Res. pp. 57-63.
- Yaseen, G. M.-R. (2015). Ethnobotany of medicinal plants in the Thar desert (Sindh) of Pakistan. . pp. 43-59.
- Zykovich A., H. A. (2014). Genome-wide DNA methylation changes with age in disease-free human skeletal muscle. Aging Cell. . pp. 360-366.
Cite this article
-
APA : Ali, P. A., Hanif, F., & Nettour, H. (2017). Strategies and Techniques of Drug Discovery from Natural Products. Global Drug Design & Development Review, II(I), 34-43. https://doi.org/10.31703/gdddr.2017(II-I).04
-
CHICAGO : Ali, Parniya Akbar, Farah Hanif, and Hosna Nettour. 2017. "Strategies and Techniques of Drug Discovery from Natural Products." Global Drug Design & Development Review, II (I): 34-43 doi: 10.31703/gdddr.2017(II-I).04
-
HARVARD : ALI, P. A., HANIF, F. & NETTOUR, H. 2017. Strategies and Techniques of Drug Discovery from Natural Products. Global Drug Design & Development Review, II, 34-43.
-
MHRA : Ali, Parniya Akbar, Farah Hanif, and Hosna Nettour. 2017. "Strategies and Techniques of Drug Discovery from Natural Products." Global Drug Design & Development Review, II: 34-43
-
MLA : Ali, Parniya Akbar, Farah Hanif, and Hosna Nettour. "Strategies and Techniques of Drug Discovery from Natural Products." Global Drug Design & Development Review, II.I (2017): 34-43 Print.
-
OXFORD : Ali, Parniya Akbar, Hanif, Farah, and Nettour, Hosna (2017), "Strategies and Techniques of Drug Discovery from Natural Products", Global Drug Design & Development Review, II (I), 34-43
-
TURABIAN : Ali, Parniya Akbar, Farah Hanif, and Hosna Nettour. "Strategies and Techniques of Drug Discovery from Natural Products." Global Drug Design & Development Review II, no. I (2017): 34-43. https://doi.org/10.31703/gdddr.2017(II-I).04