Green Synthesis of Iron Nanoparticle, their Characterization Using Melia Azedrach Leaves Extract and its Phytochemical Analysis
The research aimed to create eco-friendly, affordable, and stable Iron Nanoparticles using Melia Azedarach plant extract and FeCl3 salt. The process involved extracting methanol, creating a solution, and combining it with FeCl3 salt. The nanoparticles were analyzed using FT-IR and UV-Vis spectroscopy. The study confirmed the synthesis of nanoparticles through visual examination and UV-Vis analysis, revealing a color shift from green to dark brownish-blackish and a high absorption peak at 430nm.FT-IR data showed a peak in iron nanoparticle samples, indicating O-H stretching in the phenolic group and C=O stretching in the carbonyl group. Phytochemical results showed cardiac glycoside, flavonoids, and steroids in Melia Azedarach plant extract. This research concluded that the Melia Azedarach plant leaf extract has the potential to create easy, affordable, environmentally stable, and biocompatible iron oxide nanoparticles.
-
Melia Azedarach, Iron Nanoparticle, FeCl3 Salt, UV-Vis Spectroscopy, FTIR
-
(1) Naima Aslam
Mphil Scholar, Department of Biotechnology, Abdul Wali Khan University Mardan, KP, Pakistan.
(2) Aneela Bashir
M. Phil, Department of Chemistry, Abdul Wali Khan University Mardan, KP Pakistan.
(3) Sidra Inyat
MPhil Scholar, Department of Biochemistry, Abdul Wali Khan University, Mardan, KP, Pakistan.
(4) Sadaf
Mphil Scholar, Department of Biochemistry Abdul Wali Khan University, KP, Pakistan.
(5) Shahzad Akhter
Mphil Scholar, Department of Chemistry, Superior University, Lahore, Punjab, Pakistan.
(6) Wajeeha Akhter
M.sc, Department of Zoology, Abdul Wali Khan University Mardan, KP Pakistan.
-
Bellantone, M., Coleman, N. J., & Hench, L. L. (2000). Bacteriostatic action of a novel four-component bioactive glass. Journal of Biomedical Materials Research, 51, 484–490.
-
Bellantone, M., Coleman, N. J., & Hench, L. L. (2000). Bacteriostatic action of a novel four-component bioactive glass. Journal of Biomedical Materials Research, 51, 484–490.
- Benelli, G., & Mehlhorn, H. (2016). Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitology Research, 115(5), 1747–1754. https://doi.org/10.1007/s00436-016-4971-z
- Blaker, J., Nazhat, S., & Boccaccini, A. (2004). Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. Biomaterials, 25(7–8), 1319–1329. https://doi.org/10.1016/j.biomaterials.2003.08.007
- Blaker, J., Nazhat, S., & Boccaccini, A. (2004). Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. Biomaterials, 25(7–8), 1319–1329. https://doi.org/10.1016/j.biomaterials.2003.08.007
- Chen, J., Luo, Y., Liang, Y., Jiang, J., Shen, G., & Yu, R. (2009). Surface-enhanced Raman scattering for immunoassay based on the biocatalytic production of silver nanoparticles. Analytical Sciences, 25(3), 347–352. https://doi.org/10.2116/analsci.25.347
- G, I. C., F, A. H., & R, D. L. (2009). Physical and Chemical Characterization of Melia azedarach L. Fruit and Leaf for Use as Botanical Insecticide. Chilean Journal of Agricultural Research, 69(1). https://doi.org/10.4067/s0718-58392009000100005
- G, I. C., F, A. H., & R, D. L. (2009). Physical and Chemical Characterization of Melia azedarach L. Fruit and Leaf for Use as Botanical Insecticide. Chilean Journal of Agricultural Research, 69(1). https://doi.org/10.4067/s0718-58392009000100005
- Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638. https://doi.org/10.1039/c1gc15386b
- Jain, P., & Pradeep, T. (2005). Potential of silver nanoparticle‐coated polyurethane foam as an antibacterial water filter. Biotechnology and Bioengineering, 90(1), 59–63. https://doi.org/10.1002/bit.20368
- Khan, S., Rizvi, S. M. D., Avaish, M., Arshad, M., Bagga, P., & Khan, M. S. (2015). A novel process for size controlled biosynthesis of gold nanoparticles using bromelain. Materials Letters, 159, 373–376. https://doi.org/10.1016/j.matlet.2015.06.118
- Khan, S., Rizvi, S. M. D., Avaish, M., Arshad, M., Bagga, P., & Khan, M. S. (2015). A novel process for size controlled biosynthesis of gold nanoparticles using bromelain. Materials Letters, 159, 373–376. https://doi.org/10.1016/j.matlet.2015.06.118
- Khatami, M., Varma, R. S., Zafarnia, N., Yaghoobi, H., Sarani, M., & Kumar, V. G. (2018). Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustainable Chemistry and Pharmacy, 10, 9–15. https://doi.org/10.1016/j.scp.2018.08.001
- Kirubaharan, C. J., Kalpana, D., Lee, Y. S., Kim, A. R., Yoo, D. J., Nahm, K. S., & Kumar, G. G. (2012). Biomediated silver nanoparticles for the highly selective Copper(II) ion sensor applications. Industrial & Engineering Chemistry Research, 51(21), 7441–7446. https://doi.org/10.1021/ie3003232
- Kirubaharan, C. J., Kalpana, D., Lee, Y. S., Kim, A. R., Yoo, D. J., Nahm, K. S., & Kumar, G. G. (2012). Biomediated silver nanoparticles for the highly selective Copper(II) ion sensor applications. Industrial & Engineering Chemistry Research, 51(21), 7441–7446. https://doi.org/10.1021/ie3003232
- Klaus, T., Joerger, R., Olsson, E., & Granqvist, C. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences, 96(24), 13611–13614. https://doi.org/10.1073/pnas.96.24.13611
- Kumar, V., & Yadav, S. K. (2008). Plant‐mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology & Biotechnology, 84(2), 151–157. https://doi.org/10.1002/jctb.2023
- Kumar, V., & Yadav, S. K. (2008). Plant‐mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology & Biotechnology, 84(2), 151–157. https://doi.org/10.1002/jctb.2023
- Mafuné, F., Kohno, J., Takeda, Y., Kondow, T., & Sawabe, H. (2000). Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. The Journal of Physical Chemistry B, 104(35), 8333–8337. https://doi.org/10.1021/jp001803b
- Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003
- Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005b). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346–2353. https://doi.org/10.1088/0957-4484/16/10/059
- Murugan, K., Aarthi, N., Kovendan, K., Panneerselvam, C., Chandramohan, B., Kumar, P. M., Amerasan, D., Paulpandi, M., Chandirasekar, R., Dinesh, D., Suresh, U., Subramaniam, J., Higuchi, A., Alarfaj, A. A., Nicoletti, M., Mehlhorn, H., & Benelli, G. (2015). Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum. Parasitology Researc
- Murugan, K., Aarthi, N., Kovendan, K., Panneerselvam, C., Chandramohan, B., Kumar, P. M., Amerasan, D., Paulpandi, M., Chandirasekar, R., Dinesh, D., Suresh, U., Subramaniam, J., Higuchi, A., Alarfaj, A. A., Nicoletti, M., Mehlhorn, H., & Benelli, G. (2015). Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum. Parasitology Researc
- Nahak, G., & Sahu, R. K. (2010). In vitro antioxidative activity of Azadirachta indica and Melia azedarach leaves by DPPH scavenging assay. Journal of American Science, 6(6), 123–128.
- Nayak, D., Pradhan, S., Ashe, S., Rauta, P. R., & Nayak, B. (2015). Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. Journal of Colloid and Interface Science, 457, 329–338. https://doi.org/10.1016/j.jcis.2015.07.012
- Nayak, D., Pradhan, S., Ashe, S., Rauta, P. R., & Nayak, B. (2015). Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. Journal of Colloid and Interface Science, 457, 329–338. https://doi.org/10.1016/j.jcis.2015.07.012
- Ntalli, N. G., Cottiglia, F., Bueno, C. A., Alché, L. E., Leonti, M., Vargiu, S., Bifulco, E., Menkissoglu-Spiroudi, U., & Caboni, P. (2010). Cytotoxic Tirucallane Triterpenoids from Melia azedarach Fruits. Molecules, 15(9), 5866–5877. https://doi.org/10.3390/molecules15095866
- Rajan, R., Chandran, K., Harper, S. L., Yun, S., & Kalaichelvan, P. T. (2015). Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials. Industrial Crops and Products, 70, 356–373. https://doi.org/10.1016/j.indcrop.2015.03.015
- Saravanakumar, A., Ganesh, M., Jayaprakash, J., & Jang, H. T. (2015). Biosynthesis of silver nanoparticles using Cassia tora leaf extract and its antioxidant and antibacterial activities. Journal of Industrial and Engineering Chemistry, 28, 277–281. https://doi.org/10.1016/j.jiec.2015.03.003
- Saravanakumar, A., Ganesh, M., Jayaprakash, J., & Jang, H. T. (2015). Biosynthesis of silver nanoparticles using Cassia tora leaf extract and its antioxidant and antibacterial activities. Journal of Industrial and Engineering Chemistry, 28, 277–281. https://doi.org/10.1016/j.jiec.2015.03.003
- Satyavati, G. V., Raina, M. K., & Sharma, M. (1976). Medicinal plants of India (pp. 201–206). Indian Council of Medical Research.
- Schultz, S., Smith, D. R., Mock, J. J., & Schultz, D. A. (2000). Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proceedings of the National Academy of Sciences, 97(3), 996–1001. https://doi.org/10.1073/pnas.97.3.996
- Seth, M. K. (2004). Trees and their economic importance. The Botanical Review, 69(4), 321–376. https://doi.org/10.1663/0006-8101(2004)069[0321:TATEI]2.0.CO;2
- Vahabi, K., & Dorcheh, S. K. (2014). Biosynthesis of Silver Nano-Particles by Trichoderma and its medical applications. In Elsevier eBooks (pp. 393–404). https://doi.org/10.1016/b978-0-444-59576-8.00029-1
- Vahabi, K., & Dorcheh, S. K. (2014). Biosynthesis of Silver Nano-Particles by Trichoderma and its medical applications. In Elsevier eBooks (pp. 393–404). https://doi.org/10.1016/b978-0-444-59576-8.00029-1
- Vishnukanta, R. A. C. (2010). Evaluation of hydroalcoholic extract of Melia azedarach Linn roots for analgesic and anti-inflammatory activity. International Journal of Phytomedicine, 2, 341–344.
- Warrier, P. K., Nambiar, V. P. K., & Ramankutty, C. (1995). Indian medicinal plants: A compendium of 500 species (pp. 10–12). Orient Longman Ltd.
- Yashni, G., Al-Gheethi, A., Mohamed, R., Arifin, S. N. H., & Hashim, N. (2019). Synthesis of nanoparticles using biological entities: an approach toward biological routes. Desalination and Water Treatment, 169, 152–165. https://doi.org/10.5004/dwt.2019.24666
- Yashni, G., Al-Gheethi, A., Mohamed, R., Arifin, S. N. H., & Hashim, N. (2019). Synthesis of nanoparticles using biological entities: an approach toward biological routes. Desalination and Water Treatment, 169, 152–165. https://doi.org/10.5004/dwt.2019.24666
- Zhang, Z., Cui, J., Wang, B., Wang, Z., Kang, R., & Guo, D. (2017). A novel approach of mechanical chemical grinding. Journal of Alloys and Compounds, 726, 514–524. https://doi.org/10.1016/j.jallcom.2017.08.024
- Zhang, Z., Huang, S., Wang, S., Wang, B., Bai, Q., Zhang, B., Kang, R., & Guo, D. (2017). A novel approach of high-performance grinding using developed diamond wheels. The International Journal of Advanced Manufacturing Technology, 91(9–12), 3315–3326. https://doi.org/10.1007/s00170-017-0037-3
- Zhang, Z., Huo, F., Zhang, X., & Guo, D. (2012). Fabrication and size prediction of crystalline nanoparticles of silicon induced by nanogrinding with ultrafine diamond grits. Scripta Materialia, 67(7–8), 657–660. https://doi.org/10.1016/j.scriptamat.2012.07.016
- Zhang, Z., Huo, F., Zhang, X., & Guo, D. (2012b). Fabrication and size prediction of crystalline nanoparticles of silicon induced by nanogrinding with ultrafine diamond grits. Scripta Materialia, 67(7–8), 657–660. https://doi.org/10.1016/j.scriptamat.2012.07.016
- Zhang, Z., Huo, F., Zhang, X., & Guo, D. (2012b). Fabrication and size prediction of crystalline nanoparticles of silicon induced by nanogrinding with ultrafine diamond grits. Scripta Materialia, 67(7–8), 657–660. https://doi.org/10.1016/j.scriptamat.2012.07.016
- Zhang, Z., Huo, Y., & Guo, D. (2013). A model for nanogrinding based on direct evidence of ground chips of silicon wafers. Science China Technological Sciences, 56(9), 2099–2108. https://doi.org/10.1007/s11431-013-5286-2
- Zhang, Z., Song, Y., Xu, C., & Guo, D. (2012). A novel model for undeformed nanometer chips of soft-brittle HgCdTe films induced by ultrafine diamond grits. Scripta Materialia, 67(2), 197–200. https://doi.org/10.1016/j.scriptamat.2012.04.017
- Zhang, Z., Song, Y., Xu, C., & Guo, D. (2012). A novel model for undeformed nanometer chips of soft-brittle HgCdTe films induced by ultrafine diamond grits. Scripta Materialia, 67(2), 197–200. https://doi.org/10.1016/j.scriptamat.2012.04.017
- Zhang, Z., Wang, B., Kang, R., Zhang, B., & Guo, D. (2015). Changes in surface layer of silicon wafers from diamond scratching. CIRP Annals, 64(1), 349–352. https://doi.org/10.1016/j.cirp.2015.04.005
- Zhu, J., Liu, S., Palchik, O., Koltypin, Y., & Gedanken, A. (2000). Shape-Controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir, 16(16), 6396–6399. https://doi.org/10.1021/la991507u
- Zhu, J., Liu, S., Palchik, O., Koltypin, Y., & Gedanken, A. (2000). Shape-Controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir, 16(16), 6396–6399. https://doi.org/10.1021/la991507u
Cite this article
-
APA : Aslam, N., Bashir, A., & Inyat, S. (2024). Green Synthesis of Iron Nanoparticle, their Characterization Using Melia Azedrach Leaves Extract and its Phytochemical Analysis. Global Drug Design & Development Review, IX(I), 24-37. https://doi.org/10.31703/gdddr.2024(IX-I).03
-
CHICAGO : Aslam, Naima, Aneela Bashir, and Sidra Inyat. 2024. "Green Synthesis of Iron Nanoparticle, their Characterization Using Melia Azedrach Leaves Extract and its Phytochemical Analysis." Global Drug Design & Development Review, IX (I): 24-37 doi: 10.31703/gdddr.2024(IX-I).03
-
HARVARD : ASLAM, N., BASHIR, A. & INYAT, S. 2024. Green Synthesis of Iron Nanoparticle, their Characterization Using Melia Azedrach Leaves Extract and its Phytochemical Analysis. Global Drug Design & Development Review, IX, 24-37.
-
MHRA : Aslam, Naima, Aneela Bashir, and Sidra Inyat. 2024. "Green Synthesis of Iron Nanoparticle, their Characterization Using Melia Azedrach Leaves Extract and its Phytochemical Analysis." Global Drug Design & Development Review, IX: 24-37
-
MLA : Aslam, Naima, Aneela Bashir, and Sidra Inyat. "Green Synthesis of Iron Nanoparticle, their Characterization Using Melia Azedrach Leaves Extract and its Phytochemical Analysis." Global Drug Design & Development Review, IX.I (2024): 24-37 Print.
-
OXFORD : Aslam, Naima, Bashir, Aneela, and Inyat, Sidra (2024), "Green Synthesis of Iron Nanoparticle, their Characterization Using Melia Azedrach Leaves Extract and its Phytochemical Analysis", Global Drug Design & Development Review, IX (I), 24-37
-
TURABIAN : Aslam, Naima, Aneela Bashir, and Sidra Inyat. "Green Synthesis of Iron Nanoparticle, their Characterization Using Melia Azedrach Leaves Extract and its Phytochemical Analysis." Global Drug Design & Development Review IX, no. I (2024): 24-37. https://doi.org/10.31703/gdddr.2024(IX-I).03