ARTICLE

FRAGMENTBASED APPROACH TOWARDS THE DESIGN OF POTENT AND VERSATILE ANTICANCER AGENTS

01 Pages : 1-14

http://dx.doi.org/10.31703/gdddr.2020(V-I).01      10.31703/gdddr.2020(V-I).01      Published : Dec 2020

Fragment-Based Approach towards the Design of Potent and Versatile Anti-Cancer Agents

    Despite years of clinical research and trials of encouraging new therapies, cancer remains a leading cause of morbidity and mortality. The fragment-based drug discovery has evolved formerly as an efficient approach for identification, optimization, and generation of lead. After identifying the fragments having binding affinity with the target using computational method for fragment screening, they are optimized into more active compounds. This review elaborates the application of methodology of fragment-based drug design in designing potent and versatile anti-cancer drug candidates. It comprises of details such as construction of fragment library and screening, principles of library design, fragment hit identification, fragment to lead optimization, deconstruction and reconstruction approach, unified fragment based QSAR technique, phytochemical and pharmacophoric fragment based drug development and FBDD based targeting of epigenetic regulators in cancer. The agents discussed include STAT-3 inhibitor, vemurafenib, pazopanib, TAS-116 HSP-90 α/β inhibitor, pexidartinib, venetoclax and erdafitinib, FBDD based designed Anticancer Agents.

    Fragment-Based Drug Design, Potent and Novel Anti-Cancer Agents, Fragment Optimization, Deconstruction-Reconstruction
    (1) Sana Ali Zahra
    Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
    (2) Ayesha Imran
    Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
    (3) Faiza Khalid
    Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
    (4) Mubashir Rehman
    Assistant Professor, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
  • Abell, C., Smith, A. and Blundell, T., (2020). Development of fragment-based approaches to build chemical tools for biology
  • Aira, L. E., Villa, E., Colosetti, P., Gamas, P., Signetti, L., Obba, S., ... & Robert, G. (2018). The oncogenic tyrosine kinase Lyn impairs the pro-apoptotic function of Bim. Oncogene, 37(16), 2122-2136.
  • Alves Avelar, L. A., Ruzic, D., Djokovic, N., Kurz, T., & Nikolic, K. (2020). Structure-based design of selective histone deacetylase 6 zinc binding groups. Journal of Biomolecular Structure and Dynamics, 38(11), 3166- 3177.
  • Amr, A. E. G. E., Abo-Ghalia, M. H., Moustafa, G. O., Al-Omar, M. A., Nossier, E. S., & Elsayed, E. A. (2018). Design, synthesis, and docking studies of novel macrocyclic pentapeptides as anticancer multi-targeted kinase inhibitors. Molecules, 23(10), 2416
  • Barelier, S., Pons, J., Marcillat, O., Lancelin, J. And Krimm, I., (2020). Fragment-Based Deconstruction of Bcl-Xl Inhibitors.doi.org/10.1021/jm100009z
  • Benner, B., Good, L., Quiroga, D., Schultz, T. E., Kassem, M., Carson, W. E., ... & Wesolowski, R. (2020). Pexidartinib, a Novel Small Molecule CSF-1R Inhibitor in Use for Tenosynovial Giant Cell Tumor: A Systematic Review of Pre-Clinical and Clinical Development. Drug Design, Development and Therapy, 14, 1693.
  • Boudou-Rouquette, P., Tlemsani, C., Blanchet, B., Huillard, O., Jouinot, A., Arrondeau, J., ... & Goldwasser, F. (2016). Clinical pharmacology, drug-drug interactions, and safety of pazopanib: a review. Expert Opinion on Drug Metabolism & Toxicology, 12(12), 1433-1444.
  • Carles, F., Bourg, S., Meyer, C., & Bonnet, P. (2018). PKIDB: A curated, annotated, and updated database of protein kinase inhibitors in clinical trials. Molecules, 23(4), 908
  • Chen, H., Yang, Z., Ding, C., Chu, L., Zhang, Y., Terry, K., Liu, H., Shen, Q. And Zhou, J., (2020). Fragment-Based Drug Design and Identification of HJC0123, A Novel Orally Bioavailable STAT3 Inhibitor for Cancer Therapy
  • Chen, H., Zhou, X., Wang, A., Zheng, Y., Gao, Y. And Zhou, J., (2020). Evolutions in Fragment- Based Drug Design: The Deconstruction- Reconstruction Approach. https://doi.org/10.1016/j.drudis.2014.09.0 15
  • Ciulli, A. And Abell, C., (2020). Fragment-Based Approaches to Enzyme Inhibition.
  • D'Angelo, A., Bagby, S., Galli, I. C., Bortoletti, C., & Roviello, G. (2020). Overview of the clinical use of erdafitinib as a treatment option for the metastatic urothelial carcinoma: where do we stand. Expert Review of Clinical Pharmacology, 1-8.
  • Dang, C. V., Reddy, E. P., Shokat, K. M., & Soucek, L. (2017). Drugging the'undruggable'cancer targets. Nature Reviews Cancer, 17(8), 502
  • Debnath, S., Kanakaraju, M., Islam, M., Yeeravalli, R., Sen, D., & Das, A. (2019). In silico design, synthesis, and activity of potential drug-like chrysin scaffold-derived selective EGFR inhibitors as anticancer agents. Computational Biology and Chemistry, 83, 107156.
  • Doi, T., Kurokawa, Y., Sawaki, A., Komatsu, Y., Ozaka, M., Takahashi, T., ... & Nishida, T. (2019). Efficacy and safety of TAS-116, an oral inhibitor of heat shock protein 90, in patients with metastatic or unresectable gastrointestinal stromal tumour refractory to imatinib, sunitinib and regorafenib: a phase II, single-arm trial. European Journal of Cancer, 121, 29-39.
  • Eguida, M., & Rognan, D. (2020). A computer vision approach to align and compare protein cavities: Application to fragment-based drug design. Journal of Medicinal Chemistry.
  • Erlanson, D. A., Fesik, S. W., Hubbard, R. E., Jahnke, W., & Jhoti, H. (2016). Twenty years on: the impact of fragments on drug discovery. Nature reviews Drug discovery, 15(9), 605.
  • Feinberg, A. P., Koldobskiy, M. A., & Göndör, A. (2016). Epigenetic modulators, modifiers, and mediators in cancer aetiology and progression. Nature Reviews Genetics, 17(5), 284-299.
  • Feng, W., Zhang, M., Wu, Z. X., Wang, J. Q., Dong, X. D., Yang, Y., ... & Yang, D. H. (2020). Erdafitinib antagonizes ABCB1-mediated multidrug resistance in cancer cells. Frontiers in Oncology, 10.
  • Furqan, M., Akinleye, A., Mukhi, N., Mittal, V., Chen, Y. And Liu, D., (2020). STAT Inhibitors for Cancer Therapy doi.org/10.1186/1756- 8722-6-90
  • Garner, P., Cox, P. B., Rathnayake, U., Holloran, N., & Erdman, P. (2019). Design and Synthesis of Pyrrolidine-based Fragments That Sample Three-dimensional Molecular Space. ACS Medicinal Chemistry Letters, 10(5), 811- 815.
  • Gu, Y., Mohammad, I. And Liu, Z., (2020). Overview of the STAT-3 Signalling Pathway in Cancer and The Development of Specific Inhibitors (Review) doi.org/10.3892/ol.2020.11394.
  • Hassaan, E., Hohn, C., Ehrmann, F. R., Goetzke, F. W., Movsisyan, L., Hüfner-Wulsdorf, T., ... & Klebe, G. (2020). Fragment Screening Hit Draws Attention to a Novel Transient Pocket Adjacent to the Recognition Site of the tRNA-Modifying Enzyme TGT. Journal of Medicinal Chemistry.
  • Howard, N., Abell, C., Blackmore, W., Chessari, G., Congreve, M., Howard, S., Jhoti, H., W. Murray, C., Seavers, L. And Montfort, R., (2020). Application of Fragment Screening and Fragment Linking to The Discovery of Novel Thrombin Inhibitors, doi.org/10.1021/jm050850v.
  • Jacquemard, C., and Kellenberger, E., (2019). A bright future for fragment-based drug discovery: what does it hold? Exp. Opin. Drug Discov. 14, 413-416. doi: 10.1080/17460441.2019.1583643
  • Kang, C. B. (2019) F-NMR in target-based drug discovery. Curr. Med. Chem. 26, 4964- 4983. doi: 10.2174/0929867326666190610160534.
  • Kidd, S. L., Osberger, T. J., Mateu, N., Sore, H. F., & Spring, D. R. (2018). Recent applications of diversity-oriented synthesis toward novel, 3-dimensional fragment collections. Frontiers in chemistry, 6, 460.
  • Kirsch, P., Hartman, A. M., Hirsch, A. K., & Empting, M. (2019). Concepts and core principles of fragment-based drug design. Molecules, 24(23), 4309.
  • Kleandrova, V. V., & Speck-Planche, A. (2020). The QSAR paradigm in fragment-based drug discovery: from the virtual generation of target inhibitors to multi-scale modeling. Mini reviews in medicinal chemistry, 20(14), 1357-1374.
  • Li Q (2020) Application of Fragment-Based Drug Discovery to Versatile Targets. Front. Mol. Biosci. 7:180. doi: 10.3389/fmolb.2020.00180
  • Loriot, Y., Necchi, A., Park, S. H., Garcia-Donas, J., Huddart, R., Burgess, E., ... & Joshi, M. (2019). Erdafitinib in locally advanced or metastatic urothelial carcinoma. New England Journal of Medicine, 381(4), 338- 348
  • Murray, C. W., & Rees, D. C. (2016). Opportunity knocks: organic chemistry for fragment- based drug discovery (FBDD). Angewandte Chemie International Edition, 55(2), 488- 492.
  • Murray, C. W., Newell, D. R., & Angibaud, P. (2019). A successful collaboration between academia, biotech and pharma led to discovery of erdafitinib, a selective FGFR inhibitor recently approved by the FDA. MedChemComm, 10(9), 1509-1511.
  • Obata, Y., Horikawa, K., Shiina, I., Takahashi, T., Murata, T., Tasaki, Y., ... & Abe, R. (2018). Oncogenic Kit signalling on the Golgi is suppressed by blocking secretory trafficking with M-COPA in gastrointestinal stromal tumours. Cancer Letters, 415, 1- 10.
  • Obata, Y., Horikawa, K., Takahashi, T., Akieda, Y., Tsujimoto, M., Fletcher, J. A., ... & Abe, R. (2017). Oncogenic signaling by Kit tyrosine kinase occurs selectively on the Golgi apparatus in gastrointestinal stromal tumors. Oncogene, 36(26), 3661-3672.
  • Roberts, A. W., Davids, M. S., Pagel, J. M., Kahl, B. S., Puvvada, S. D., Gerecitano, J. F., ... & Wong, S. (2016). Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. New England Journal of Medicine, 374(4), 311-322.
  • Rochlani, S. P., Choudhari, P. B., & Dahiwade, L. K. (2020). Phytochemical and Pharmacophoric Fragment Based Anticancer Drug Development. Current computer-aided drug design
  • Saito, Y., Takahashi, T., Obata, Y., Nishida, T., Ohkubo, S., Nakagawa, F., ... & Sugase, T. (2020). TAS-116 inhibits oncogenic KIT signalling on the Golgi in both imatinib-naïve and imatinib-resistant gastrointestinal stromal tumours. British journal of cancer, 122(5), 658-667.
  • Seymour, J. F., Kipps, T. J., Eichhorst, B., Hillmen, P., D'Rozario, J., Assouline, S., ... & Jaeger, U. (2018). Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. New England Journal of Medicine, 378(12), 1107-1120
  • Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA: a cancer journal for clinicians, 70(1), 7-30.
  • Wong, A., Hirpara, J., Pervaiz, S., Eu, J., Sethi, G. And Goh, B., (2020). Do STAT3 Inhibitors Have Potential in the Future for Cancer Therapy? doi.org/10.1080/13543784.2017. 1351941
  • Singh, M., Tam, B., & Akabayov, B. (2018). NMR- fragment based virtual screening: A brief overview. Molecules, 23(2), 233.
  • Xi, T., Qingli, T., Fengrui, L., & Fengxiang, T. (2018). Advances in the Synthesis of Venetoclax as a New Drug for the Treatment of Chronic Lymphocytic Leukemia. Chemistry, (2), 3.
  • Tap, W. D., Gelderblom, H., Palmerini, E., Desai, J., Bauer, S., Blay, J. Y., ... & Thomas, D. M. (2019). Pexidartinib versus placebo for advanced tenosynovial giant cell tumour (ENLIVEN): a randomised phase 3 trial. The Lancet, 394(10197), 478-487.
  • Yu, W., Xiao, H., Lin, J. And Li, C., 2020. Discovery of Novel STAT3 Small Molecule Inhibitors Via In Silico Site-Directed Fragment-Based Drug Design.J Med Chem. doi.org/10.1021/jm400080c.
  • Temple, K. J., Engers, J. L., Long, M. F., Gregro, A. R., Watson, K. J., Chang, S., ... & Bridges, T. M. (2019). Discovery of a novel 3, 4- dimethylcinnoline carboxamide M4 positive allosteric modulator (PAM) chemotype via scaffold hopping. Bioorganic & medicinal chemistry letters, 29(21), 126678
  • Yue, P. And Turkson, J., 2020. Targeting STAT3 In Cancer: How Successful Are We? doi.org/10.1517/13543780802565791.
  • Torres-Collado, A. X., Knott, J., & Jazirehi, A. R. (2018). Reversal of resistance in targeted therapy of metastatic melanoma: lessons learned from vemurafenib (BRAFV600E-Specific Inhibitor). Cancers, 10(6), 157
  • Zhang, W., Heinzmann, D., & Grippo, J. F. (2017). Clinical pharmacokinetics of vemurafenib. Clinical Pharmacokinetics, 56(9), 1033- 1043.
  • Zhong, W., Koay, A., Ngo, A., Li, Y., Nah, Q., Wong, Y. H., ... & Foo, K. (2019). Targeting the bacterial epitranscriptome for antibiotic development: Discovery of novel tRNA- (N1G37) methyltransferase (TrmD) inhibitors. ACS infectious diseases, 5(3), 326-335.
  • Wesolowski, R., Sharma, N., Reebel, L., Rodal, M. B., Peck, A., West, B. L., ... & Le, M. H. (2019). Phase Ib study of the combination of pexidartinib (PLX3397), a CSF-1R inhibitor, and paclitaxel in patients with advanced solid tumors. Therapeutic advances in medical oncology, 11, 1758835919854238.

Cite this article

    APA : Zahra, S. A., Imran, A., & Khalid, F. (2020). Fragment-Based Approach towards the Design of Potent and Versatile Anti-Cancer Agents. Global Drug Design & Development Review, V(I), 1-14. https://doi.org/10.31703/gdddr.2020(V-I).01
    CHICAGO : Zahra, Sana Ali, Ayesha Imran, and Faiza Khalid. 2020. "Fragment-Based Approach towards the Design of Potent and Versatile Anti-Cancer Agents." Global Drug Design & Development Review, V (I): 1-14 doi: 10.31703/gdddr.2020(V-I).01
    HARVARD : ZAHRA, S. A., IMRAN, A. & KHALID, F. 2020. Fragment-Based Approach towards the Design of Potent and Versatile Anti-Cancer Agents. Global Drug Design & Development Review, V, 1-14.
    MHRA : Zahra, Sana Ali, Ayesha Imran, and Faiza Khalid. 2020. "Fragment-Based Approach towards the Design of Potent and Versatile Anti-Cancer Agents." Global Drug Design & Development Review, V: 1-14
    MLA : Zahra, Sana Ali, Ayesha Imran, and Faiza Khalid. "Fragment-Based Approach towards the Design of Potent and Versatile Anti-Cancer Agents." Global Drug Design & Development Review, V.I (2020): 1-14 Print.
    OXFORD : Zahra, Sana Ali, Imran, Ayesha, and Khalid, Faiza (2020), "Fragment-Based Approach towards the Design of Potent and Versatile Anti-Cancer Agents", Global Drug Design & Development Review, V (I), 1-14
    TURABIAN : Zahra, Sana Ali, Ayesha Imran, and Faiza Khalid. "Fragment-Based Approach towards the Design of Potent and Versatile Anti-Cancer Agents." Global Drug Design & Development Review V, no. I (2020): 1-14. https://doi.org/10.31703/gdddr.2020(V-I).01