http://dx.doi.org/10.31703/gdddr.2023(VIII-II).12
10.31703/gdddr.2023(VIII-II).12
Published : Jun 2023
Albumin Overview and Its Purification Method
Drug researchers are currently studying the use of nanoparticles in drug delivery in great detail. In general, a medication's pharmacokinetic and tissue appropriation profiles can be changed, intracellular infiltration and appropriation can be improved, and a drug's absorption can be improved by dispersing the drug via the epithelium. The ability of nanoparticulate frameworks to tolerate physiological pressure—that is, their increased organic stability and oral conveyance plausibility—is one of their key advantages. As such, they offer a more appealing drug delivery solution than liposomes.
-
Nanoparticles, Pharmacokinetic, Intracellular Infiltration, Liposomes
-
(1) Bushra Rehman
Assistant Professor, Rahman Medical Institute, Peshawar, KP, Pakistan.
(2) Hira Ikram
Lecturer, Institute Biotechnology and Microbiology, Bacha Khan University, Charsadda, KP, Pakistan.
(3) Rabia Nasir
Assistant Professor, Center of Excellence in Marine Biology, Karachi, Sindh, Pakistan.
(4) Aiman Umar
Assistant Professor, Department of Microbiology, Quaid I Azam University, Islamabad, Pakistan.
- Suri, S. S. H., &Fenniri, B. (2007) Singh, Nanotechnology-based drug delivery systems, J.Occup. Med. Toxicol. 1, 2–16.
- Roco, M. C. (2003). Nanotechnology: convergence with modern biology and medicine, Curr. Opin. Biotechnol. 14, 337–346.
- Torchilin, V. P. (2008). Nanotechnology in Drugs, second ed. Imperial College Press,London,
- Sahoo, S. K. V. (2008). Labhasetwar, Nanotech approaches to drug delivery and imaging, Drug Discov. Today 8, 1112–1120
- Couvreur, P. C. (2006). Vauthier, Nanotechnology: intelligent design to treat complex disease, Pharm. Res. 23, 1417–1450.
- Kumar, R. M. N. (2000). Nano and microparticles as controlled drug delivery devices, J.Pharm. Pharm. Sci. 3, 234–258
- Liu, Z, Y. Jiao, Y. Wang, C. Zhou, Z. Zhang. (2008). Polysaccharides-based nanoparticles as drug delivery systems, Adv. Drug Deliv. Rev. 60, 1650–1662
- Fernandez-Urrusuno, P., Calvo, C., Remunan- Lopez, J., L. & Vila-Jato, M. J. (1999). Alonso, Enhancement of nasal absorption of insulin using chitosan nanoparticles, Pharm. Res. 16, 1576–1581
- Farrugia, M. J. (1999). Groves, the activity of unloaded gelatin nanoparticles on murine B16-F0 melanoma growth in vivo, Anticancer. Res. 19, 1027–1031
- Fattal, C. Vauthier, I. Aynie, Y. Nakada, G. Lambert, C. Malvy, P. (1998). Couvreur, Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides, J. Control. Release 53, 137– 143.
- Breunig, S. Bauer, A. (2008). Goepferich, Polymers and nanoparticles: intelligent tools for intracellular targeting? Eur. J. Pharm. Biopharm. 68, 112–128.
- Kuijpers, P.B. van Wachem, M.J.A. van Luyn, L.A. Brouwer, G.H.M. Engbers, J. Krijgsveld, (2000). In vitro and in vivo evaluation of gelatin chondroitin sulphate hydrogels for controlled release of antibacterial proteins, Biomaterials 21, 1763–1772
- Elzoghby, W.S. Abo El-Fotoh, N. A. (2011). Elgindy, Casein-based formulations as promising controlled release drug delivery systems, J. Control. Release 153, 206–216.
- Vandelli, F. Rivasi, P. Guerra, F. Forni, R. (2001). Arletti, Gelatin microspheres crosslinked with d, l-glyceraldehyde as a potential drug delivery system: preparation, characterization, in vitro and in vivo studies, Int. J. Pharm. 215, 175–184.
- Sahin, H. Selek, G. Ponchel, M.T. Ercan, M.A. Sargon, A. Hincal, H.S. (2002). Kas, Preparation, characterization and in vivo distribution of terbutaline sulfate loaded albumin microspheres, J. Control. Release 82, 345–358.
- Langer, S. Balthasar, V. Vogel, N. Dinauer, H. von Briesen, D. (2003). Schubert Optimization of the preparation process for human serum albumin (HSA) nanoparticles, Int. J. Pharm. 257, 169–180.
- Rubino, R. Kowalsky, J. (1993). Swarbrick, Albumin microspheres as a drug delivery system: relation among turbidity ratio, degree of cross-linking and drug release, Pharm. Res. 10, 1059–1065.
- Kommareddy, M. (2005). Amiji, Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione, Bioconjug. Chem. 16, 1423–1432.
- Azarmi, X. Tao, H. Chen, Z. Wang, W.H. Finlay, R. (2006). Löbenberg, W.H. Roa, Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles, Int. J. Pharm. 319, 155–161.
- Kratz, I. Fichtner, P. Schumarcher, T. (1997). Roth, H.H. Feibig, C. Unger, Antitumoractivity of acid labile transferrin and albumin doxorubicin conjugates in vitro and in vivo human tumor xerograft models, Eur. J. Cancer 33, S175
- Rahimnejad, M. Jahanshahi, G.D. (2006). Najafpour, Production of biological nanoparticles from bovine serum albumin for drug delivery, Afr. J. Biotechnol.5, 1918–1923
- Fasano, M., Curry, S., & Terreno, E. (2005). The extraordinary ligand binding properties human serum albumin. IUBMB Life 57, 787– 79
- Droge, W., Schulze-Osthoff, K., & Mihm, S, (1994). Functions of glutathione and glutathione disulfide in immunology and immunopathology. FASEB J, 8, 1131–1138
- Stohl, W. (1996). Elliot JE: In vitro inhibition by intravenous immunoglobulin of human cell- dependent B cell differentiation induced by staphylococcal superantigens. Clin Immunol Immunopathol, 79, 122–133
- Stohl, W. (1996). Elliot JE: In vitro inhibition by intravenous immunoglobulin of human cell- dependent B cell differentiation induced by staphylococcal superantigens. Clin Immunol Immunopathol, 79, 122–133
- Ephrem, A., Chamat, S., & Miquel, C, (2008). Expansion of CD4+ CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood, 111, 715–722
- Kragh-Hansen, U. (2013). Molecular and practical aspects of the enzymatic properties of human serum albumin and of albumin-ligand complexes. Biochim Biophys Acta , 1830(12), 5535-44
- Elzoghby, A. O., Samy, W. M., & Elgindy, N. A. (2012). Albuminbased nanoparticles as potential controlled release drug delivery systems. J Control Release, 157(2), 168-82.
- Liumbruno, G. M., Bennardello, F., Lattanzio, A., Piccoli, P., & Rossettias, G. (2009). Recommendations for the use of albumin and immunoglobulins. Blood Transfus, 7(3):216- 34
- Dugaiczyk, A., Law, S. W., & Dennison, O. E. (1982). Nucleotide sequence and the encoded amino acids of human serum albumin mrna. Proc Natl Acad Sci USA , 79(1):71-5.
- Clowes, G. H. J., Vucinic, M., & Weidner, M. G. (1966). Circulatory and metabolic alterations associated with survival or death in peritonitis: Clinical analysis of 25 cases. Ann Surg, 163(6):866-85
- Chen, Z., He, Y., Shi, B., & Yang, D. (2013). Human serum albumin from recombinant DNA technology:Challenges and strategies. Biochim Biophys Acta, 1830(12):5515-25
- Chen, Z., He, Y., Shi, B., & Yang, D. (2013). Human serum albumin from recombinant DNA technology:Challenges and strategies. Biochim Biophys Acta, 1830(12):5515-25
- Raoufinia, R., Mota, A., Nozari, S., Aghebati, M. L., Balkani, S., & Abdolalizadeh, J. (2016). A methodological approach for purification and characterization of human serum albumin. J Immunoassay Immunochem, 37(6):623-35
- He, Y., Ning, T., Xie, T., Qiu, Q., Zhang, L., & Sun, Y. (2011). Large-scale production offunctional human serum albumin from transgenic rice seeds. Proc Nat Acad Sci USA, 108(47):19078- 83
- Raoufinia, R., Mota, A., Nozari, S., Aghebati, M. L., Balkani, S., & Abdolalizadeh, J. (2016). AMethodological Approach for Purification and Characterization of Human Serum Albumin.J. Immunoassay Immunochem. 37(6), 623–635
- Hage, D. S., Anguizola, J. A., Bi, C., Li, R., Matsuda, R., & Papastavros, E, (2012). Pharmaceutical and biomedical applications of affinitychromatography: Recent trends and developments. J Pharm Biomed Anal, 69, 93- 105
- Abdolalizadeh, J., Nouri, M., Zolbanin, J. M., Barzegari, A., Baradaran, B., & Barar, J. (2013). Targeting cytokines: Production and characterization of antiTNF-alpha scFvs by phage display technology. Curr Pharm Des, 19(15), 2839-47
- Abdolalizadeh, J., Majidi, Z. J., Nouri, M., Baradaran, B., Movassaghpour, A., & Farajnia, S. (2013). Affi nity purification of tumor necrosis factoralpha expressed in raji cells by Produced scFvantibody coupled CNBr-activated sepharose. Adv Pharm Bull, 3(1):1923.
- Abdolalizadeh, J., Nouri, M., Zolbanin, J. M, Baradaran, B., Barzegari, A., & Omidi, Y. (2012). Downstream characterization of anti- TNF-alpha single chain variable fragment antibodies. Hum Antibodies, 21(1-2), 41-8
- Cuatrecasas, P., Wilchek, M., & Anfinsen, C. B. (1968). Selective enzyme purification byaffinity chromatography. Proc Natl Acad Sci USA, 61(2), 636-43.
- Moore, S., & Stein, W. H. (1956). Column chromatography of peptides and proteins. Adv. Protein Chem., 11, 191-236.
- William, W. (2009). Ward and Gavin Swiatek, Protein Purification, Current Analytical Chemistry, 5,000-000
- Kovacs, A., & Guttman, A. (2013). Medicinal chemistry meets proteomics: Fractionation of the human plasma proteome. Curr Med Chem, 20(4), 483-90.
- vasileva, R., Jakab, M., & Hasko, F. (1981). Application of ionexchange chromatography for the production of human albumin. J Chromatogr, 216, 279-84.
- Abdolalizadeh, J., Majidi, J., & Farajnia, S. (2008). Production and purification of polyclonal antibody against human kappa light chain. J Biol Sci, 8(3), 683-6.
- Aghebati, M. A. (2013). Large scale generation and characterization of anti-human cd34 monoclonal antibody in ascetic fluid of balb/c mice. Adv Pharm Bull, 3(1), 211-6.
- Frerick, C., Kreis, P., Gorak, A., & Melzner, D. (2006). Simulation and optimisation of the downstream process for purification of human serum albumin by using ion exchange membrane adsorbers. Desalination, 200 (1-3), 468-9
- Frerick, C., Kreis, P., Gorak, A., Tappe, A., & Melzner, D. (2008). Simulation of a human serum albumin downstream process incorporating ion-exchange membrane adsorbers. Chem Eng Process, 47(7), 1128-38
- Ramin, R., Ali, M., Neda, K., Fatemeh, S., Sara, S., & Jalal, A. (2016). Overview of protein ad its purification. Adv pharm bull, 6(4), 495-507.
- Denizli, A. (2011). Plasma fractionation: Conventional and chromatographic methods for albumin purification. Hacettepe J Biol Chem 39(4), 315-41.
Cite this article
-
APA : Rehman, B., Ikram, H., & Nasir, R. (2023). Albumin Overview and Its Purification Method. Global Drug Design & Development Review, VIII(II), 89-96. https://doi.org/10.31703/gdddr.2023(VIII-II).12
-
CHICAGO : Rehman, Bushra, Hira Ikram, and Rabia Nasir. 2023. "Albumin Overview and Its Purification Method." Global Drug Design & Development Review, VIII (II): 89-96 doi: 10.31703/gdddr.2023(VIII-II).12
-
HARVARD : REHMAN, B., IKRAM, H. & NASIR, R. 2023. Albumin Overview and Its Purification Method. Global Drug Design & Development Review, VIII, 89-96.
-
MHRA : Rehman, Bushra, Hira Ikram, and Rabia Nasir. 2023. "Albumin Overview and Its Purification Method." Global Drug Design & Development Review, VIII: 89-96
-
MLA : Rehman, Bushra, Hira Ikram, and Rabia Nasir. "Albumin Overview and Its Purification Method." Global Drug Design & Development Review, VIII.II (2023): 89-96 Print.
-
OXFORD : Rehman, Bushra, Ikram, Hira, and Nasir, Rabia (2023), "Albumin Overview and Its Purification Method", Global Drug Design & Development Review, VIII (II), 89-96
-
TURABIAN : Rehman, Bushra, Hira Ikram, and Rabia Nasir. "Albumin Overview and Its Purification Method." Global Drug Design & Development Review VIII, no. II (2023): 89-96. https://doi.org/10.31703/gdddr.2023(VIII-II).12