01 Pages : 1-8
References
- Akoka, J., Comyn-Wattiau, I., & Laoufi, N. (2017). Research on big data-a systematic mapping study. Computer Standards & Interfaces, 54, 105-115.
- Aldeghi, M., Heifetz, A., Bodkin, M. J., Knapp, S., & Biggin, P. C. (2016). Accurate calculation of the absolute free energy of binding for drug molecules. Chemical Science, 7(1), 207-21
- Alonso, H., Bliznyuk, A. A., & Gready, J. E. (2006). Combining docking and molecular dynamic simulations in drug design. Medicinal Research Reviews, 26(5), 531-568
- Alpaydin, E. (2004). Introduction to machine learning (adaptive computation and machine learning). Cambridge, MA: The MIT Press.
- Andrade, C. H., Neves, B. J., Melo-Filho, C. C., Rodrigues, J., Silva, D. C., Braga, R. C., & Cravo, P. V. L. (2018). In silico chemogenomics drug repositioning strategies for neglected tropical diseases. Current Medicinal Chemistry. [in press].
- Arcon, J. P., Defelipe, L. A., Modenutti, C. P., Lo ÃŒÂpez, E. D., Alvarez-Garcia, D., Barril, X., ... Mart ÃŒÂı, M. A. (2017). Molecular dynamics in mixed solvents reveals protein-ligand interactions, improves docking, and allows accurate binding free energy predictions. Journal of Chemical Information and Modeling, 57, 846-863.
- Atkinson, S. J., Soden, P. E., Angell, D. C., Bantscheff, M., Chung, C., Giblin, K. A., ... Prinjha, R. K. (2014). The struc- ture based design of dual HDAC/BET inhibitors as novel epigenetic probes. Medicinal Chemical Communications, 5, 342-351.
- Bajorath, J. (2013). A perspective on computational chemogenomics. Molecular Informatics, 32, 1025-1028. Bajorath, J. (2017). Molecular similarity concepts for informatics applications: (pp. 231-245). New York, NY: Humana Press.
- Barmania, F., & Pepper, M. S. (2013). C-C chemokine receptor type five (CCR5): an emerging target for the control of HIV infection. Applied & Translational Genomics, 2, 3-16.
- Beauchamp, K. A., Lin, Y.-S., Das, R., & Pande, V. S. (2012). Are protein force fields getting better? A systematic benchmark on 524 diverse NMR measurements. Journal of Chemical Theory and Computation, 8, 1409-1414.
- Beisken, S., Meinl, T., Wiswedel, B., de Figueiredo, L. F., Berthold, M., & Steinbeck, C. (2013). KNIME-CDK: workflow-driven cheminformatics. BMC Bioinformatics, 14, 257
- Best, R. B., Buchete, N.-V., & Hummer, G. (2008). Are current molecular dynamics force fields too helical? Biophysical Journal, 95, L07-L09.
- Bini, S. A. (2018). Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care? The Journal of Arthroplasty, 33, 2358-2361.
- Bornmann, L. (2012). Measuring the societal impact of research. EMBO Reports, 13, 673-676.
- Brindha, S., Vincent, S., Velmurugan, D., Ananthakrishnan, D., Sundaramurthi, J. C., & Gnanadoss, J. J. (2017). Bioinformatics approach to prioritize known drugs towards repurposing for tuberculosis. Medical Hypotheses, 103, 39-45.
- Computer Aided Drug Design: from Discovery of Novel Pharmaceutical Agents to Systems Pharmacology
- February 17, 2020, V.V. Poroikov, Institute of Biomedical Chemistry, ul. Pogodinskaya 10, bldg. 8, Moscow, 119121 Russia pages (222-223).
- Saldıvar-Gonza ÃŒÂlez, F. I., Prieto-Mart ÃŒÂınez, F. D., & Medina-Franco, J.L. (2017). Descubrimiento y desarrollo de
- Wassermann, A. M., Lounkine, E., Hoepfner, D., Le Goff, G., King, F. J., Studer, C., ... Glick, M. (2015). Dark chemical matter as a promising starting point for drug lead discovery. Nature Chemical Biology, 11, 958-966.
- WHO. (2018). World Health Organization. Retrieved from Accessed 24 March 2018.
- Yadav, D. K., Kumar, S., Saloni, Singh, H., Kim, M. H., Sharma, P.,
- Yang, H., Sun, L., Li, W., Liu, G., & Tang, Y. (2018). In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Frontiers in Chemistry, 6, 30.
Cite this article
-
APA : Paiman, A., Mohammad, A., & Rehman, M. (2017). Role of Computer Aided Drug Design in Modern Drug Discovery and Pharmacokinetic Prediction. Global Drug Design & Development Review, II(I), 1-8. https://doi.org/10.31703/gdddr.2017(II-I).01
-
CHICAGO : Paiman, Arif, Ahmad Mohammad, and Mubashar Rehman. 2017. "Role of Computer Aided Drug Design in Modern Drug Discovery and Pharmacokinetic Prediction." Global Drug Design & Development Review, II (I): 1-8 doi: 10.31703/gdddr.2017(II-I).01
-
HARVARD : PAIMAN, A., MOHAMMAD, A. & REHMAN, M. 2017. Role of Computer Aided Drug Design in Modern Drug Discovery and Pharmacokinetic Prediction. Global Drug Design & Development Review, II, 1-8.
-
MHRA : Paiman, Arif, Ahmad Mohammad, and Mubashar Rehman. 2017. "Role of Computer Aided Drug Design in Modern Drug Discovery and Pharmacokinetic Prediction." Global Drug Design & Development Review, II: 1-8
-
MLA : Paiman, Arif, Ahmad Mohammad, and Mubashar Rehman. "Role of Computer Aided Drug Design in Modern Drug Discovery and Pharmacokinetic Prediction." Global Drug Design & Development Review, II.I (2017): 1-8 Print.
-
OXFORD : Paiman, Arif, Mohammad, Ahmad, and Rehman, Mubashar (2017), "Role of Computer Aided Drug Design in Modern Drug Discovery and Pharmacokinetic Prediction", Global Drug Design & Development Review, II (I), 1-8
-
TURABIAN : Paiman, Arif, Ahmad Mohammad, and Mubashar Rehman. "Role of Computer Aided Drug Design in Modern Drug Discovery and Pharmacokinetic Prediction." Global Drug Design & Development Review II, no. I (2017): 1-8. https://doi.org/10.31703/gdddr.2017(II-I).01