ARTICLE

BIOADHESIVE NANOMEDICINE FOR TARGETED DRUG DELIVERY

02 Pages : 10-23

http://dx.doi.org/10.31703/gdddr.2019(IV-I).02      10.31703/gdddr.2019(IV-I).02      Published : Dec 2019

Bio-Adhesive Nanomedicine for Targeted Drug Delivery

    The bio/muco-adhesive auxiliary agents are considered as a promising strategy for the administration of various challenging drugs including peptides, proteins and oligosaccharides therapeutics. The delivery of such therapeutics is hampered due to rapid degradation, restricted uptake, short residence time, poor solubility and limited half-life. The recent emergence of nanomedicine based on bio/mucoadhesive auxiliary agents is offering new avenues to overcome these drawbacks. Hence, it is important to understand the mechanism of nanoscale bio/mucoadhesion, protocols for investigating bio/mucoadhesive potential at nanoscale. This chapter is an endeavor to focus on the mechanism of bio adhesion and the bio/mucoadhesive auxiliary agents that are used in the design of the targeted oral, nasal, ocular, vaginal, and buccal nanomedicine with their properties that affect the bio/mucoadhesion.

    Bio Adhesion, Mucoadhesion, Nano Cargoes, Polymers, Targeted Drug Delivery System
    (1) Ali Iqbal
    M.Phil Candidate, Department of Life Sciences, Faculty of Pharmacy, University of Hertfordshire, Hatfield, United Kingdom UK.
    (2) Ramsha Malik
    M. Phil Candidate, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
    (3) Malik Irfan Zulfiqar
    BS Biotechnology Scholar, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan.
    (4) Maria Hassan Kiani
    PhD Candidate, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
    (5) Muhammad Rauf ul Hassan
    Associate Professor, Department of Pulmonology, Quaid-i-Azam Medical College, Bahawalpur Victoria Hospital, Bahawalpur, Punjab, Pakistan.
  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Transport into the cell from the plasma membrane: endocytosis Molecular Biology of the Cell. 4th edition: Garland Science.
  • Bandow, S., Rao, A., Williams, K., Thess, A., Smalley, R., & Eklund, P. (1997). Purification of single- wall carbon nanotubes by microfiltration. The Journal of Physical Chemistry B, 101(44), 8839-8842.
  • Beg, S., Rahman, M., Jain, A., Saini, S., Hasnain, M., Swain, S., . . . Akhter, S. (2018). Emergence in the functionalized carbon nanotubes as smart nanocarriers for drug delivery applications Fullerens, Graphenes and Nanotubes (pp. 105- 133): Elsevier.
  • Bianco, A., Kostarelos, K., & Prato, M. (2005). Applications of carbon nanotubes in drug delivery. Current opinion in chemical biology, 9(6), 674-679.
  • De La Zerda, A., Zavaleta, C., Keren, S., Vaithilingam, S., Bodapati, S., Liu, Z., . . . Oralkan, O. (2008). Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nature nanotechnology, 3(9), 557-562.
  • Dresselhaus, M. S., Dresselhaus, G., & Eklund, P. C. (1996). Science of fullerenes and carbon nanotubes: their properties and applications: Elsevier
  • Fisher, C., E Rider, A., Jun Han, Z., Kumar, S., Levchenko, I., & Ostrikov, K. K. (2012). Applications and nanotoxicity of carbon nanotubes and graphene in biomedicine. Journal of Nanomaterials, 2012.
  • Flahaut, E., Bacsa, R., Peigney, A., & Laurent, C. (2003). Gram-scale CCVD synthesis of double- walled carbon nanotubes. Chemical Communications(12), 1442-1443.
  • Grady, B. P. (2006). The Use of Solution Viscosity to Characterize Single-Walled Carbon Nanotube Dispersions. Macromolecular Chemistry and Physics, 207(23), 2167-2169.
  • Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., & Smalley, R. E. (1995). Catalytic growth of single-walled manotubes by laser vaporization. Chemical physics letters, 243(1-2), 49-54.
  • Herrera, J. E., & Resasco, D. E. (2003). Role of Co− W interaction in the selective growth of single- walled carbon nanotubes from CO disproportionation. The Journal of Physical Chemistry B, 107(16), 3738-3746.
  • Hong, S. Y., Tobias, G., Al-Jamal, K. T., Ballesteros, B., Ali-Boucetta, H., Lozano-Perez, S., . . . Mather, S. J. (2010). Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nature materials, 9(6), 485-490.
  • Hou, P., Bai, S., Yang, Q., Liu, C., & Cheng, H. (2002). Multi-step purification of carbon nanotubes. Carbon, 40(1), 81-85.
  • Hou, P.-X., Liu, C., & Cheng, H.-M. (2008). Purification of carbon nanotubes. Carbon, 46(15), 2003-2025.
  • Hu, H., Zhao, B., Itkis, M. E., & Haddon, R. C. (2003). Nitric acid purification of single-walled carbon nanotubes. The Journal of Physical Chemistry B, 107(50), 13838-13842.
  • Huang, W., Wang, Y., Luo, G., & Wei, F. (2003). 99.9 Percent purity multi-walled carbon nanotubes by vacuum high-temperature annealing. Carbon, 41(13), 2585-2590.
  • Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58.
  • Jain, A., Mehra, N. K., Nahar, M., & Jain, N. (2013). Topical delivery of enoxaparin using nanostructured lipid carrier. Journal of microencapsulation, 30(7), 709-715
  • Ji, Z., Lin, G., Lu, Q., Meng, L., Shen, X., Dong, L., . . . Zhang, X. (2012). Targeted therapy of SMMC- 7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. Journal of colloid and interface science, 365(1), 143-149.
  • Kesharwani, P., Ghanghoria, R., & Jain, N. K. (2012). Carbon nanotube exploration in cancer cell lines. Drug Discovery Today, 17(17-18), 1023- 1030.
  • Lacerda, L., Bianco, A., Prato, M., & Kostarelos, K. (2008). Carbon nanotube cell translocation and delivery of nucleic acids in vitro and in vivo. Journal of Materials Chemistry, 18(1), 17-22.
  • Lacerda, L., Russier, J., Pastorin, G., Herrero, M. A., Venturelli, E., Dumortier, H., . . . Bianco, A. (2012). Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials, 33(11), 3334-3343.
  • Laurent, C., Flahaut, E., & Peigney, A. (2010). The weight and density of carbon nanotubes versus the number of walls and diameter. Carbon, 48(10), 2994-2996.
  • Lee, Y., & Geckeler, K. E. (2010). Carbon nanotubes in the biological interphase: the relevance of noncovalence. Advanced Materials, 22(36), 4076-4083.
  • Liu, Z., Tabakman, S., Sherlock, S., Li, X., Chen, Z., Jiang, K., . . . Dai, H. (2010). Multiplexed five- color molecular imaging of cancer cells and tumor tissues with carbon nanotube Raman tags in the near-infrared. Nano research, 3(3), 222-233.
  • Liu, Z., Tabakman, S., Welsher, K., & Dai, H. (2009). Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano research, 2(2), 85-120.
  • M DeRosa, A., Greco, K., Rajamani, S., & Sitharaman, B. (2010). Recent patents on single-walled carbon nanotubes for biomedical imaging, drug delivery and tissue regeneration. Recent Patents on Biomedical Engineering, 3(2), 86- 94.
  • Mehra, N. K., Mishra, V., & Jain, N. (2014). A review of ligand tethered surface engineered carbon nanotubes. Biomaterials, 35(4), 1267-1283.
  • Mohajeri, M., Behnam, B., & Sahebkar, A. (2019). Biomedical applications of carbon nanomaterials: drug and gene delivery potentials. Journal of cellular physiology, 234(1), 298-319.
  • Monthioux, M., Serp, P., Caussat, B., Flahaut, E., Razafinimanana, M., Valensi, F., . . . Weibel, A. (2017). Carbon nanotubes Springer Handbook of Nanotechnology (pp. 193-247): Springer.
  • Mu, Q., Broughton, D. L., & Yan, B. (2009). Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano letters, 9(12), 4370-4375.
  • Pruthi, J., Mehra, N. K., & Jain, N. K. (2012). Macrophages targeting of amphotericin B through mannosylated multiwalled carbon nanotubes. Journal of drug targeting, 20(7), 593-604.
  • Rafique, M. M. A., & Iqbal, J. (2011). Production of carbon nanotubes by different routes-a review. Journal of encapsulation and adsorption sciences, 1(02), 29.
  • Rastogi, V., Yadav, P., Bhattacharya, S. S., Mishra, A. K., Verma, N., Verma, A., & Pandit, J. K. (2014). Carbon nanotubes: an emerging drug carrier for targeting cancer cells. Journal of drug delivery, 2014. nanotubes for imaging of brown fat. Scientific reports, 7(1), 1-12.
  • Zerda, A. d. l., Liu, Z., Bodapati, S., Teed, R., Vaithilingam, S., Khuri-Yakub, B. T., . . . Gambhir, S. S. (2010). Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano letters, 10(6), 2168-2172.
  • Zhang, X., Meng, L., Lu, Q., Fei, Z., & Dyson, P. J. (2009). Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials, 30(30), 6041-6047.
  • Zimmerman, J. L., Bradley, R. K., Huffman, C. B., Hauge, R. H., & Margrave, J. L. (2000). Gas- phase purification of single-wall carbon nanotubes. Chemistry of Materials, 12(5), 1361- 1366.

Cite this article

    CHICAGO : Iqbal, Ali, Ramsha Malik, and Malik Irfan Zulfiqar. 2019. "Bio-Adhesive Nanomedicine for Targeted Drug Delivery." Global Drug Design & Development Review, IV (I): 10-23 doi: 10.31703/gdddr.2019(IV-I).02
    HARVARD : IQBAL, A., MALIK, R. & ZULFIQAR, M. I. 2019. Bio-Adhesive Nanomedicine for Targeted Drug Delivery. Global Drug Design & Development Review, IV, 10-23.
    MHRA : Iqbal, Ali, Ramsha Malik, and Malik Irfan Zulfiqar. 2019. "Bio-Adhesive Nanomedicine for Targeted Drug Delivery." Global Drug Design & Development Review, IV: 10-23
    MLA : Iqbal, Ali, Ramsha Malik, and Malik Irfan Zulfiqar. "Bio-Adhesive Nanomedicine for Targeted Drug Delivery." Global Drug Design & Development Review, IV.I (2019): 10-23 Print.
    OXFORD : Iqbal, Ali, Malik, Ramsha, and Zulfiqar, Malik Irfan (2019), "Bio-Adhesive Nanomedicine for Targeted Drug Delivery", Global Drug Design & Development Review, IV (I), 10-23
    TURABIAN : Iqbal, Ali, Ramsha Malik, and Malik Irfan Zulfiqar. "Bio-Adhesive Nanomedicine for Targeted Drug Delivery." Global Drug Design & Development Review IV, no. I (2019): 10-23. https://doi.org/10.31703/gdddr.2019(IV-I).02